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Preface

The present book includes extended and revised versions of a set of selected papers
from the 12th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP 2017), held in Porto,
Portugal, from February 27 to March 1, 2017.

The purpose of the 12th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) was to
bring together researchers and practitioners interested in both theoretical advances and
applications of computer vision, computer graphics, and information visualization.
VISIGRAPP is composed of four co-located conferences, each specialized in at least
one of the aforementioned main knowledge areas.

VISIGRAPP 2017 received 402 paper submissions from 48 countries, of which 4%
are included in this book. The papers were selected by the event program co-chairs,
based on a number of criteria that include the reviews and suggested comments pro-
vided by the Program Committee members, the session chairs’ assessments, and also
the program chairs’ global view of all papers included in the technical program. The
authors of selected papers were invited to submit a revised and extended version
of their papers having at least 30% new material.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on Image and Video Formation, Preprocessing,
Analysis and Understanding; Motion, Tracking and Stereo Vision; Computer Graphics
and Rendering; Data Visualization and Interactive Visual Data Analysis; Agent-Based
Human–Robot Interactions; and User Experience. The richness and the variety of the-
oretical advances and research results highlighted by these selected papers reflect the
vitality and the prevalence of the research areas covered by the VISIGRAPP
conference.

We would like to thank all the authors for their contributions to this book and also to
the reviewers who helped ensure the quality of this publication.

February 2019 Ana Cláudio
Dominique Bechmann

Paul Richard
Takehiko Yamaguchi

Lars Linsen
Alexandru Telea
Francisco Imai
Alain Tremeau
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Calibrating, Rendering and Evaluating
the Head Mounted Light Field Display

Anne Juhler Hansen(B), Jákup Klein, and Martin Kraus

Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark
{ajha,martin}@create.aau.dk, jakupklein@gmail.com

Abstract. There are several benefits of using a light field display over
a traditional HMD; in particular the light field can avoid the vergence-
accommodation conflict and can also correct for near- and farsighted-
ness. By rendering only four corner cameras of a subimage array, then
these four views can be interpolated in order to create all subimages of
the light field. We implement the interpolation of the subimages in the
light field with the use of pixel reprojection, while maintaining correct
perspective and shading. We give an comprehensive explanation of the
construction and calibration of a head mounted light field display, and
finally we evaluate the image quality through image difference and con-
duct a user evaluation of the light field images in order to evaluate if
users are able to perceive a difference in the light field images created
with the full array of virtual cameras and our method using four cameras
and pixel reprojection. In most cases the users were unable to distinguish
the images, and we conclude that pixel reprojection is a feasible method
for rendering light fields as far as quality is concerned.

1 Introduction

Traditional HMDs lack 3-dimensional cues, hereunder the parallax effect and
correct eye accommodation, whereas light field displays have advantages to
traditional stereoscopic head mounted displays, e.g. due to the fact that the
vergence-accommodation conflict is not present. The vergence-accommodation
conflict has been under suspicion of causing visual fatigue, eye-strain, diplopic
vision, headaches, and other signs of simulation sickness [1]. The light field dis-
play allows an observer to perceive a scene at different depths and angles, and
can provide correct retinal blur, parallax and eye accommodation. Hence light
field displays can eliminate visual discomfort and nausea, since this may balance
out some of the conflicting cues which are experienced with traditional HMDs.
One way of creating a light field display is by placing a distance-adjusted array of
microlenses in front of a display. When rendering for a light field display, several
2D subimages have to be rendered from different views, as seen from an array
of different cameras. Instead of rendering an array of virtual cameras, views can
be interpolated from only four rendered cameras [2]. Our contributions are:

– We propose a method to render light fields that reduces the number of virtual
cameras through pixel reprojection.

c© Springer Nature Switzerland AG 2019
A. P. Cláudio et al. (Eds.): VISIGRAPP 2017, CCIS 983, pp. 3–28, 2019.
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– We give a comprehensive description of the light display construction, setup
and calibration.

– We examine the image quality through image difference and evaluate whether
test subjects are able to notice a difference in image quality using the two-
interval forced choice test.

1.1 Vergence-Accommodation Conflict

The human ocular system will adapt when focus is changed between different
distances, such that the point of interest remains binocularly fused i.e. in focus.
Vergence and accommodation are the two parameters that influence our percep-
tion of depth and focus. Accommodation refers to the physical shape of the lens
of the eye, where the eye increases optical power to maintain a clear focused
image. When accommodating, the shape of the lens inside the eye changes to
allow for a focused image at that (see Fig. 1). Accommodation can be consciously
controlled, but usually acts like a reflex. Humans can change the optical accom-
modation of their eyes by up to 15 diopters (the inverse of the focal length in
metres), but the accommodation diversity is reduced with age [3].

Fig. 1. Vergence (a+b) is when the eyes move inwards (convergence) or outwards
(divergence) towards a focus point. Accommodation (c+d) is the physical shape of
the eye. Correct retinal blur (e) as experienced through a light field display. Vergence-
Accommodation Conflict (f).

The vergence mechanism continually adjusts the angle between the two eyes
such that features at the focus distance remain fused in the binocular vision.
A pair of eyes will converge along the vertical axis, when an object in focus
comes closer to the eye, or in other words, as the distance of the point of interest
decreases from infinity. The eyes will diverge when the distance to a point of inter-
est gets longer and/or goes towards infinity. The vergence and accommodation
system interplay with each other in a feedback loop, since there is a secondary set
of cues for both systems consisting of reciprocal signals from one another. This
means that a change in visual cues will affect both system; stereo disparity drives
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the eyes to converge or diverge, and retinal blur prompts an oculomotor accom-
modation adjustment. To further strengthening the argument of these systems
being very tightly coupled, Suryakumar et al. have shown that visual disparity
in isolation elicits a fully comparable accommodation response to that of retinal
blur [4]. The reciprocal secondary cues between accommodation and vergence
serve to better coordinate the final accommodative response in natural viewing
conditions [5]. However, in traditional stereo imaging where the depth is fixed,
vergence towards a different distance will elicit conflicting cues between the two
systems, and this has been linked to discomfort [6], visual fatigue, and reduced
visual performance [1]. Research in resolving the vergence-accommodation con-
flict is still ongoing, and there are several proposals of solutions in both soft- and
hardware [7] (see Sect. 2.4). One of the consequent benefits of a light field display
is that it allows natural accommodation and vergence (see Fig. 1). Focusing at
different distances simply determines which parts of the 2D image slices that
are focused onto the retina. The light field images can be rendered to be per-
ceived as if they are at natural (or unnatural) distances away from the viewer.
By adjusting e.g. the field of view of each subimage camera, the depth of the
optically reconstructed image will be influenced. By taking advantage of this
fact, the virtual distances can correct for near- and far-sightedness of users [8],
which can negate the use of glasses (or contact lenses) when wearing a HMD.

2 The Light Field

To understand the light field and its influence in computer graphics research,
one must understand how to represent all light in a volume. The beginning of
the light field and its definition can be traced back to Leonardo Da Vinci, who
referred to a set of light rays as radiant pyramids [9]:

The body of the air is full of an infinite number of radiant pyramids caused
by the objects located in it. These pyramids intersect and interweave with
each other during the independent passage throughout the air in which
they are infused.

Later on, the light field has been defined as the amount of light travelling
in every direction through every point in space. Light can be interpreted as a
field, because space is filled with an array of light rays at various intensities. This
is close to the definition of the 5D plenoptic function, which describes all light
information visible from a particular viewing position. This can be explained as
recording the intensity of the light rays passing through the center of a pupil
placed at every possible x, y, and z in a 3-dimensional volume, and at every angle
θ and ϕ [9]. The plenoptic function allows reconstruction of every possible view,
from every position, at every direction (see Eq. 1).

P (θ, φ, x, y, z) (1)

Since radiance does not change along a line unless it is blocked, the 5D
plenoptic function can be reduced to 4D in space free of occluders [10]. The
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4D light field can explain the total light intensity of each ray as a function of
position and direction (see Eq. 2).

P ′(θ, φ, u, v) (2)

The light intensity is given for every possible position u and v on a 2-
dimensional plane, and angle θ and φ.

Fig. 2. The light slab is a two-plane parameterization, where the st-plane can be
thought of as a collection of perspective images of the scene, and the uv-plane cor-
responds to the position(s) of the observer(s).

2.1 Parameterization of the 4D Light Field

Levoy et al. described how a light field can be parameterized by the position of
two points on two planes [10]. This parameterization is called a light slab (see
Fig. 2). A light ray enters one plane (the uv-plane) and exits another plane (the
st-plane), and the result is a 2D array of images of a scene at different angles.
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Since a 4D light field can be represented by a 2D array of images, it has the
advantage that the geometric calculations are highly efficient. The line of all
light rays can simply be parameterized by the two points. When parameterizing
the light field into 2D-images, the elemental images correspond to images taken
from different positions on the uv-plane, and each image represents a slice of the
4D light slab. In other words, the st-plane can be thought of as a collection of
perspective images of the scene, and the uv-plane corresponds to the position of
the observer.

2.2 Light Field Displays

The light field can be optically reconstructed by placing a distance-adjusted
array of microlenses in front of a display (see Fig. 3). This is known as a light
field display. The light field display allows an observer to integrate a correct
2D image of the light field at different depths and angles in accordance with
the spatial and depth resolution that the light field contains. In other words
the light field display allows an observer to accommodate and converge his/her
eyes on a virtual object as if it were part the real world. Since every pixel on
the screen emits light, and all lenslets in the full microlens array transmit the
light in accordance with the angular information, the result will be a full light
field. Depending on where the observer is looking, different subimage pixels will
be used to create the view, and hence the 3-dimensional holographic effect can
be experienced. The image seen through a light field display has focus cues,
where the convergence point is the point in focus, and the rest of the image
appears blurred just like the real world. Even a monocular experience of the
light field will give appropriate depth and focus cues, since the eye will focus at
a point behind the screen at the correct distance (see Sect. 1.1). Since distances

Fig. 3. (a) Light from one pixel travels through lenses in the microlens array. Some of
the light rays reach the eye, and some light rays will be bent in other directions. (b)
Light from several pixels travel through the microlens array and (some) reach the eye
or area of the eyebox with different incident angles. This allows the observer to focus
his/her eyes while getting the corresponding light rays.
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can be virtually manipulated, the light field can be optically reconstructed to
account for near- and far-sightedness of users. Light field display technology is
being researched in several areas: 3D-displays [11], light field projection [12],
and holography [13]. Commercial products, like the Leia 3D display, are on the
market, and claim to give holographic imagery with content appearing to come
out of a conventional liquid crystal display (LCD) and showing the parallax
effect with head movement without the need of any glasses. Likewise does the
head mounted light field stereoscope [14] not use a microlens array, but creates
the light field via stacked liquid crystal panels and hereby emphasizes that light
field renderings can be shown with different technologies.

2.3 Head-Mounted Light Field Displays

Most HMDs do not account for the vergence-accommodation conflict (see
Sect. 1.1), they suffer from low resolution and a low field-of-view (FOV), they are
heavy and have big and bulky optics [15]. Light fields can improve on some of
the limitations of traditional fixed-focus HMDs, since light fields consist of more
information than usual 2D images. With the benefits from using microlenslet
arrays in HMDs, Lanman and Luebke have shown that a light field display can
be integrated into a HMD, which can both minimize the size of HMDs and
potentially allow for much more immersive VR solutions compared to the fixed
focus displays used in most common HMDs [8]. Lanman and Luebke have cre-
ated near-eye light field displays with a thickness of 1 cm. [16], and Shaulov
et al. demonstrated that ultracompact imaging optical relay systems based on
microlenslet arrays can be designed with an overall thickness of only a few mil-
limetres [17] creating the potential of light-weight HMDs that are less bulky than
their predecessor.

Capturing the Light Field. In light field photography a 2D representation
of the 4D light field can be captured and then sampled into a 2D image with a
specific focus plane within the limits of the stored light field. The light field can
be captured in several ways; either with an array of cameras [18,19], by moving
a camera forward and backward [20], or by using a plenoptic camera containing
an array of microlenses [21]. The first hand-held plenoptic camera that captures
the 4D light field in one photographic exposure was created by Ng et al. [21].
The 4D light field is reconstructed into a 2D image in software post-capture, and
can compute sharp photographs focused at different depths. In other words this
method creates a synthetic aperture, that expands editing possibilities in post
production by eliminating limitations related to a fixed aperture. Interpolation
strategies for optimizing resolution with light field photography are also being
explored. Georgeiv et al. [22] have created an interpolation method that creates
a better resolution in the final light field photograph by virtually increasing the
amount of views to be more than the amount of microlenslets. Naimark et al.
created a stereo image capture rig, that captures a pair of stereo images [23].
From that a synthetic scene with depth could be calculated using cross dissolve.
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Since the light field gives a high accuracy of sampling it is possible to triangulate
points into a point cloud, which provides the ability of tracking objects and semi-
reconstruct objects and scenes 3-dimensionally. This is one of the reasons why
light field technology has potential benefits in the field of visual effect (VFX).
Since light field photography essentially captures depth, it can be used to redefine
previous methods (e.g. chroma keying) and develop new approaches (e.g. depth
screen removal). Depth screen removal is one example of a new and improved
technique for the VFX workflow, where the volumetric data from the light field
can be used to disperse the object of interest from the background. The depth can
among things be used to create semi-automated segmentation and rotoscoping.
VR is already exploring the use of live-action footage, e.g. with the use of the
Ricoh Theta, which is an omnidirectional camera that with two fish-eye lenses
captures 360◦ with a single shot. The captured images overlap, and can therefore
be stitched together, taking every photo from that single point of view. Similar
solutions include the Jaunt, the Nokia Ozo, and the GoPro Odyssey, but a 360◦

spherical image will though only create a flat panorama in VR, and will get no
3D and parallax effect.

The future might bring light field live-action footage to the VR platform, and
therefore the motivating force to research light field renderings and evaluating
it through user testing is both interesting and relevant for future studies and
implementation.

2.4 Light Field Rendering

One of the first times light fields were introduced into computer graphics was
by Levoy et al. in 1996, where they used image based rendering to compute new
views of a scene from pre-existing views without the need for scene geometry
[10]. The technique showed a real-time view of the light field, where it was pos-
sible to see a scene with correct perspective and shading, and with the option of
zooming in and out. When zooming in, the light samples disperse throughout the
array of 2D slices, so the perceived image is constructed from pieces from several
elemental images. Davis et al. have created a system for interactively acquiring
and rendering light fields using a camera being waved around an object [24].
They present a rendering algorithm that triangulates the captured viewpoints
and is specially designed for the unstructured and dense data of the light field.
Using direct light field rendering, Jeoung et al. have introduced an image-based
rendering method in the light field domain, which attempts to directly compute
only the necessary samples, and not the entire light field, to improve rendering in
terms of complexity and memory usage [25]. Light field technology is competing
with other technologies that are trying to display some of the same effects but
with different advantages and short comings. Foveated rendering is a technique
where the image resolution is not uniform across the image, and where the abil-
ities of the human peripheral vision can be taken advantage of. The technique
can be used to create retinal blur, which is the blurred perception of objects
outside the center of gaze (and therefore in the peripheral vision). Gupta et
al. worked on tracking and predicting eye gaze accurately with the objective of
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improving interactivity using eye-gaze information by enabling foveated render-
ing or simulate retinal blur [26]. Since the method also can be used to accelerate
graphics computation, Guenter et al. performed a user study on foveated 3D
graphics. Their method tracks the user’s gaze point and from that renders three
image layers around it at progressively higher angular size but lower sampling
rate [27]. Reducing complexity is highly desired when working with light fields,
and (re)construction of overlapping views is a good place to start, since this
is where the light field contains a lot of redundant information. Much of the
data is repetitive, especially when looking at a scene placed at infinity, where all
subimages are created from parallel light rays. Instead of creating a virtual cam-
era or capturing an individual subimage for each elemental image, interpolation
can be used to reduce the computational effort. Pixel reprojection can therefore
be used as a tool to optimize shaders, since reusing data between consecutive
frames can accelerate real-time shading [28,29]. The spatio-temporal coherence
of image sequences has been exploited for several rendering systems [30,31] (e.g.
for global illumination), or temporal anti aliasing can be created by matching
pixels from the current frame with pixels from the last frame, and from that
in-between views can be calculated [32]. One important aspect of pixel reprojec-
tion is that the depth value at each pixel should be known in order to be able
to reproject the data [33].

3 Implementation and Methods

By rendering only four corner cameras of a subimage array, then these four
views can be interpolated in order to create all subimages of the light field.
We implement the interpolation of the subimages in the light field with the use
of pixel reprojection, while maintaining correct perspective and shading. We
give an comprehensive explanation of the construction and calibration of a head
mounted light field display. Finally we evaluate the image quality through image
difference and conduct a user evaluation of the light field images in order to
evaluate if users are able to perceive a difference in the light field images created
with the full array of virtual cameras and our method using four cameras and
pixel reprojection.

3.1 The Light Field Display

The head mounted near-eye light field display is constructed using an array of
lenses (a Fresnel Technologies #630 microlens array) in front of a similar size
adjusted array of rendered images (see Fig. 4). The #630 microlens array has a
focal length of 3.3 mm and a physical lenslet size of 1 × 1 mm, which determines
the subimage array size and the number of pixels in each subimage. Based on
research by Lanman and Luebke [8], each of the lenslets in the microlens array
can be seen as a simple magnifier for each of the subimages in the array. Depicting
the individual lenslets as a thin lens is though only an approximation, since the
lenslets are influenced by parameters of a thick lens; curvature, its index of
refraction and its thickness.
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Fig. 4. An observer sees the light field by looking through a microlens array in front
of a screen, where each lens covers one subimage. Rays from different subimages enter
the pupil of the observer, and the light field is experienced as one image, where the
light samples disperse throughout the array of subimages. When focus (vergence and
accommodation) is changed, the perceived image will be constructed from rays from
other subimages [2].

The lens separation dl can be found using the Gaussian thin lens formula (see
Eq. 3) where dl is the distance between the lens and the display (with 0 < dl ≤ f),
f is the focal length, d0 is the distance to the virtual image, and de is the eye
relief.

1
f

=
1
dl

− 1
d0 − de

⇔ dl =
f(d0 − de)

f + (d0 − de)
(3)

The lens separation dl is one of the parameters in the formula with the
greatest impact on the perceived image, since the microlens array should be
placed at a distance 0 < dl ≤ f . With f = 3.3 mm the lens separation should be
dl ≈ 3.29 mm or in other words just below the focal length f = 3.3 mm. With
an eye relief of 35 mm and d0 set to 1 m, then the lens separation dl = 3.2888
mm. The lens separation was manually adjusted to the best possible alignment
dl ≈ 3.29 mm using a 3D printed spacer. Since the microlens array has a thickness
of 3.3 mm, it had to be turned with the flat side up, which might cause sources
of error, since it is difficult to confirm the distance dl = 3.2888 mm. The lenslet
array must be placed in front of the screen so that the lenses and the subimages
align. This is especially true for the rotation since the position of the subimages
can easily be adjusted in the shader. This is, however, not the case for rotation.
The alignment was achieved by placing a microscope directly above the screen.
The image from the microscope was then sent to a Processing sketch that placed
a (green) grid on top of the sub-images (see Fig. 5, left). The image will appear
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Fig. 5. Aligning the subimages with the lenslets: Left image shows a grid superim-
posed over the subimages in the screen. Center image shows lenses misaligned with
the subimages. Right image shows the correct alignment of the subimages and lenses.
(Color figure online)

distorted if the rotation alignment is off by several degrees (see Fig. 5, center).
If the alignment, however, is close to correct the image will appear correct. The
lenslet array was placed on top and another grid (red) was shown that had the
same position and rotation but was scaled to accommodate the larger squares
(see Fig. 5, right).

The magnification factor can be used to calculate the field of view, since it
tells us the magnification of the image on the screen to the image plane at d0.
With f = 3.3 mm and d0 = 1000 mm the magnification factor is M = 293.42
(see Eq. 4 [8]), where w0 is the width of the virtual image at the plane of focus,
and ws is the width of the microdisplay.

M =
w0

ws
=

d0 − de
dl

= 1 +
d0 − de

f
(4)

The FOV is either limited by the extent of the lens (lens-limited magnifier)
or it is limited by the dimensions of the display (display-limited magnifier). The
lens-limited magnifier is influenced by wl

2de
, whereas the display-limited magnifier

is influenced by Mw

2d0
, and since our FOV only can be limited by the lens (see

Eq. 5), we can then calculate the FOV for each of our virtual cameras in the
array. Field of view α (from the lens) per camera:

α = 2arctan
(

Δws

2dl

)
(5)

The FOV per rendered camera is then calculated to be 17.28◦. When con-
firming the FOV, we could though conclude, that a FOV of 19.86◦ gave a sharper
image. The FOV can be confirmed by measuring the angle between a camera
looking straight at the display and a camera looking at the edge of the display
(see Fig. 6).

Since a microlens array can be interpreted as a set of independent lens-limited
magnifiers, the total field of view αt from the viewer’s eye can be found using
the array width Nlwl, and the eye relief de. Nl is the number of lenses, and wl

is the lens width. The total FOV αt should then be given by [8]:
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Fig. 6. Confirming FOV (a); the camera is moved to find the FOV of the subimage.
Confirming that the total FOV is correct (b); if Θlower and Θupper are the same, then
the angled camera will see both red spheres (small and large) in the same position since
they follow the same line. If the angles are not the same, the camera will not see both
spheres i.e. it will follow another line e.g. the red line. (Color figure online)

αt = 2arctan
(

Nlwl

2de

)
(6)

The vertical FOV for 15 lenses is calculated to be FOVv = 24.2◦ and the
horizontal FOV for 8 lenses is FOVh = 13.0◦ (see Eq. 7). We can also calculate
the maximum spatial resolution Np, by using the distance to the virtual image d0,
the FOV α, the magnification factor M and the pixel pitch p. When calculating
with the used FOV = 19.86◦ and a pixel pitch p calculated to be 0.012 mm for
both vertical and horizontal axis (with a resolution of 1280× 720 and the screen
size 15.36 mm × 8.64 mm. Likewise the maximum spatial resolution Np is given
by:
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Np =
2d0 tan(αt/2))

Mp
(7)

We get a maximum spatial resolution of 121 × 64 px (see Eq. 7), but since αt

is expanded by the number of lenses Nl, and part of the rendered subimages are
repeated across some or all of the elemental images, this repetition will reduce
the perceived spatial resolution. Also, since the virtual cameras are quadratic,
we either will have to cut off the top and bottom to fill the 15 × 8 ratio of the
screen, or we will show the complete quadratic view plus extra views of the light
field on the sides.

3.2 Rendering the Light Field

Through the Unity engine, a virtual image is rendered for every lenslet that
is within the bounds of the microdisplay, so the light field will be perceived
as one holographic image with focus cues. Each subimage (or elemental image)
is rendered to a portion of the microdisplay; optimally 15 mm× 8 mm out of
15.36 mm × 8.64 mm to utilise most possible of the spatial resolution. The center
of a subimage should be calibrated to correspond to the center of the lenslet, and
the virtual camera array should form a grid that would ideally be spaced with
the same distance as that between each lenslet (1 mm × 1 mm). Any spacing is
usable, as long as the relationship follows the physical lens-spacing in both axes.

Scaling the grid spacing in the scene essentially scales the virtual world size
accordingly. For our rendering engine we increase this grid by a factor of 1000
to move the world further away from the nearest possible camera clipping plane.
As already mentioned, object distances can be adjusted to correct for near-
and far-sightedness (see Sect. 1.1). The light field is computed by extracting the
two-dimensional slice from the 4D light field (see Fig. 7). Since the perceived

Fig. 7. A 4D light field can be seen as a collection of images of a scene, where the focal
points of the cameras are all on a 2D plane.
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image is constructed from pieces from several subimages, we need to render all
these subimages in an array corresponding to the dimensions of our microlens
array. The secure and reliable solution would be to render 15×8 different virtual
cameras, where each camera has the same alignment as the lenslets. We refer
to this as a light field image created with virtual cameras, and consider this the
golden standard to which we compare our method to.

Pixel Reprojection. Pixel reprojection involves the redistribution of informa-
tion from a set of input pixels to a set of output pixels. To capture an image of
a scene consisting of vertices in a 3D volume (world space) the vertices must be
transformed to the camera’s space (camera/eye space), where a 2D image with
perspective distortion within near and far plane can be generated (see Fig. 8).
The interpolation of the subimages is accomplished by using pixel reprojection,
where the pixels from the corner images are copied to the corresponding place
in the interpolated subimage. To achieve this the pixel must be placed back to
the 3D world and be “captured” to the interpolated subimage (see Fig. 9). The
view space renders through a camera centered in the origin, hence view space
is also referred to as camera space or eye space. The input pixel energy must
be redistributed to the output pixel based on the exact overlap between these
pixels.

The transformation depends on the x-coordinates on both the projection
plane, xp, and in eye space, xe, as well as the near clipping plane n and the
z-position ze in eye space (see Eq. 8).

xp

xe
=

−n

ze
(8)

Fig. 8. 2D projection; the vertices are transformed to eye space where a 2D image with
perspective distortion is generated. The geometry in the scene is projected onto the
2D plane, and using that information the image can then be calculated.
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Fig. 9. A pixel can be reprojected from a corner camera (CamA), to an interpolated
camera (e.g. CamB). The cameras have coordinates in the 3-dimensional eye space,
whereas the projection plane is 2-dimensional.

The clip coordinate system projects all vertex data from the view space
to the clip coordinates by comparing xclip, yclip, and zclip with wclip (which
are [x, y, z, w] in clipping space). Any clip coordinate vertex that is less than
a certain wclip or greater than a certain wclip will be discarded, and then the
clipping occurs. The x-coordinate of eye space, xe is mapped to xp, which is
calculated by using the ratio of similar triangles (see Eq. 9).

xe = −xp · ze
n

(9)

Likewise the transformation from eye/camera space to the projection plane
is influenced by the position in eye space xe, the position on the projection plane
xp, the near clipping plane n, and the depth ze (see Eq. 10).

xp = −n · xe

ze
(10)

The transformation from the projection plane to the eye space requires the
depth from the eye space. The depth is saved from the corner cameras into
the (unused) alpha channel. It was found through experimentation that a 24 bit
texture (8 bits per channel) was not sufficient to give accurate depth information,
if, however, a 32 bit (float32) texture was used, the problem was negated.

There are cases where pixel reprojection will not yield a full image, but rather
an image with missing information i.e. in some cases objects will occlude other
objects in such a way that when the camera is being reprojected, information is
missing from the camera angle of view. The effect can be seen, when a computed
image is comprised of the pixels from two corner cameras, but the information
needed to interpolate a new pixel value is not available (see Fig. 10).
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Fig. 10. Example of a scene where the corner cameras (red and blue) do not have
the necessary information to create an in-between camera (green). The colour of the
rectangles indicates the camera view; red indicates that the red camera can see it, blue
indicates that the blue camera can see it, and grey indicates that neither red or blue
camera can see it. (Color figure online)

In this project the missing pixel the values were filled by information (the
mean value) from the subpixel position where the pixel value from the corner
images were read. The result is that the hole is filled with colours that are present
in the scene. Other solutions would be to repeat the edges of the last remaining
pixel color information or adding more than four virtual cameras (see Fig. 11).

Shader Programming. To render a finished image most of the pixels must be
reprojected from the corner images, the individual pixels are not depending on
they neighbours (just the corner images). Due to this the process would benefit
from a parallel approach where several pixels are calculated in parallel.

The interpolation is implemented as an image post-processing effect in Unity
3D. Unity works with image effects as scripts attached to a camera to alter the
rendered output, and the computation is done in the shader scripts. The rendered
images can be accessed via render textures, which are created and updated at
runtime.
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Fig. 11. On the left the hole is filled with the edge pixels and repeated until the hole
is full. In the center the hole is filled by averaging the pixel values in the corresponding
position on the corner cameras. On the right is the image as it should look. (Color
figure online)

The process consisted of several steps (see Fig. 12). Firstly the corner images
were captured and placed in the corners of the output image. Next the top and
bottom row were calculated from the corner images. The pixel in question would
be in a certain position in its own subimage. This relative position would serve
as a starting point in the corner images. The pixel in the corner images would
be reprojected to the current subimage. If the reprojected position would be off
with more that 0.5 pixels then the neighbour pixel in the corner image would
be reprojected. Whether left or right neighbours are checked depends on where
the corner camera is relative to the pixel reprojected camera. These calculations
would be performed a certain number of times, unless the perfect candidate
(<0.5 pixels) was found.

Once a perfect candidate was found, a new pixel reprojection would be per-
formed, this time the offset (<0.5 pixels) would be taken in to consideration so
that a accurate value could be found. Once the calculations were finished the
candidates from the corner images were evaluated. In some cases all four cor-
ner images would have a candidate. If more than one candidate was available
then the value with the smallest distance would be chosen. At this point the
top and bottom rows were completed. These would serve as data for the pixel
reprojection of the remaining subimages.

The two first steps were performed on textures that were four times larger
than the output (screen) size because of super sampling. The next step reduces
the size by taking the mean of several pixels, thus minimizing the staircase effect
(see Fig. 12, and Sect. 3.2). Finally the image was re-sized and re-positioned
according to the lenslet size and placement.
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Shader calculating the 
top and bottom images

Shader calculating the 
y axis images

Shader that takes the 
image and scales to a 
size appropriate for the 

screen used

Output on display

Shader downsamples 
the image with a 4x4 

box 

Cam0 
texture

Cam1 
texture

Cam3 
texture

Cam2 
texture

Fig. 12. Flowchart of the complete process. Note that the step where the top and
bottom row are calculated portions of the texture that are not used have been grayed
out.

Anti-aliasing. When rendering to a near eye light field, anti-aliasing must be
used [8]. The problem with paring pixel reprojection and anti-aliasing is that
anti-aliasing smooths out hard edges, but pixel reprojection requires the pixel
colours to stay on the pixel position in order to have an accurate depth for that
point and still maintain the correct colour. The depth can not be interpolated
since that would result in edges being averaged between objects that are not
at the same depth. This would result in pixels where the depth lies between
objects in the scene effectively creating new objects. This would not show up in
the corner images, but as soon as the camera view is moved from the original
position. The solution is to apply anti-aliasing after all pixel reprojection is
completed. To achieve this super sampling is needed where an image with a
resolution much higher than the intended output image is rendered, then the
image size is reduced to its intended resolution by combining the pixel values
of the high resolution image. In this project a 4× (double width and double
height) resolution image was used. When reducing the size, several methods can
be used. One example is a 2 × 2 box where the mean of a box of 2 × 2 pixels
is found and used in the lower resolution image. This will improve the look of
the edges by reducing the “staircase” effect. The effect is, however, still strong.
Another method is to use a 4×4 box where the outermost ring will overlap with
the outermost ring in the neighbouring pixels [34]. In this project we used the
4 × 4 box to obtain a higher quality image.
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4 User Evaluation

This experiment aims at statistically comparing if subjects can discriminate
between the images created with 120 virtual cameras (VC) in the Unity engine,
and the image created with our pixel reprojection method (PR). 5 different scenes
were tested in a total of 10 different image tests (5 shown with the light field
display and 5 single-image (position [4; 8] out of [8; 15]) on a computer monitor.
The 5 different scenes were designed to test different rendering scenarios, and how
the difference in geometry influence our rendering method. The different scenes
include various numbers of objects, shapes, sizes and textures (see Fig. 13).

One image (image 5) was created with a large difference between reference
image and sample; (1) to test the boundaries of the pixel reprojection method,
and (2) to account for participant frustration. If test participants are never sure
if their answers are correct or not, they can get frustrated, and decide that the
given task is impossible and then start answering randomly [35] which would
bias the results. The image was created to push the boundaries of the method
with the presumption that the test participants were able to notice a difference
between PR and the reference image VC.

4.1 Test Setup

Results from 34 test participants have been evaluated. Only participants with
normal-vision, corrected to normal, nearsightedness, or small corrections (in the
range −1.75 to +0.50) were allowed to participate. Since the objects in the scenes
were within a distance of 12 cm to 6 m away from the camera position, then test
participants with nearsightedness were fit but participants with farsightedness
would bias the results, since farsightedness does not allow participants to accom-
modate on objects that are close. All samples were independent. 16 female and
18 male participants attended and their age ranged from 9 to 67 years. The test
participants were explained that they would be shown a reference image and then
two other images (one of which was the same at the reference image) and that
they should identify the reference duplicate. An xBox 360 controller was used
as an input device for the test participants. They were explained how to use the
controller which they then used to switch between the images. They were given
the choice to put headphones on for auditory feedback when they pressed the
same button more than once or when they tried to choose the reference image.
If they declined, then the facilitator would give the same feedback. Participants
first took the test with the light field HMD, and after that they took the same
test where the center subimage of the light field was shown. The order of the
images was randomised. They could view the different images as many times as
they saw fit. Participants then made a decision using the controller, and if the
current image at that time was the reference image, the controller would vibrate
to indicate that the image could not be chosen.
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4.2 Two-Interwal Forced Choice Test

We chose the 2-interval forced choice test where test participants had to choose
one of two alternatives with no neutral alternatives listed. The test participants
were asked to solve several matching-to-sample tasks. The experiment was con-
ducted as a delayed matching-to-sample, where the reference stimuli is shown in
sequence with two other stimulus (the sample or comparison stimuli).

Since two possible choices were shown sequentially this is referred to as a
two-interval forced choice (2-IFC) procedure [35].

This test is passed if the probability for test participants to incorrectly iden-
tify PR as VC is greater than 19% with a confidence level of 95%. This corre-
sponds to the commonly used threshold of test participants guessing incorrectly
minimum 25% of at least 100 trials and complies with true hypothesis testing
where the probability of incorrectly rejecting the null hypothesis is less than 5%
[36]. The probability mass function for the number i of incorrect answers [37]:

f(i | n, pnull) =
n!

x!(n − i)!
px(1 − pnull)n−x (11)

where pnull is the probability of PR incorrectly identified as VC, i is the number
of incorrect answers and n is the number of trials. From the probability mass
function we can find the critical number ic.

ic(n, pnull) = min

{
i |

j−i∑
n

f(j;n, pnull) < 0.05

}
(12)

With 34 test participant the critical number ic = 11, this is the minimum
amount of test participants that need to incorrectly identify the PR image to
be the best match to the reference image (VC) [37]. In other words, if the test
subjects can do no better than a random guess, then the test has been passed,
and we can conclude that the test participants perceive no difference between
VC and PR.

5 Result and Analysis

With 10 different image tests (5 shown with the light field display and 5 on a
computer monitor) we see that image 1–4 passed the test (see Fig. 14), since 11
or more participants have chosen PR and hence the test passed ic = 11. Image 5
was intentionally designed to show the inadequacy of our method (see Fig. 13).
For image 1–4 the test participants did not see a difference in image quality,
but still small reprojection errors can be seen in the PR images. Small errors
can occur at any distance, but larger areas of missing information (the occluded
regions) becomes larger when the objects are close to the camera.

With only 6 test participants choosing PR for image 5 the critical number ic
= 11 was not reached. We can then conclude that our method is inefficient when
we have objects close to the camera (i.e. occlusion), since participants are able
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Fig. 13. Image samples from the center virtual camera of the five different scenes
(position [4, 8] out of [8, 15]). When looking closely we can see small mistakes in the
pixel reprojected images (PR), and especially Image 5 shows a large difference between
the reference image (VC) and PR [2].

Fig. 14. When 11 or more test participants choose PR, we can conclude that the test
participants can do no better than a random guess, and therefore that they do not see
a difference between VC and PR [2].

to notice the difference. When subtracting PR from VC and taking the absolute
value, we can see the difference between the two images (see Fig. 15).

We have found the difference between all VC and PR images, and analysed
the pixel difference for the red, green and blue colour channel individually. A
complete pixel match will be shown as black [0], and the pixel differences is
normalized and therefore in the range [0; 1] (for our test images our difference is
between [0; 0.6] (see Table 1). The worst maximum pixel value is found in image
5 in the green channel, and as already mentioned, we are missing information due
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Fig. 15. Example of the shortcomings of our pixel reprojection method; When objects
are occluded from the corner cameras they can not be reprojected and therefore we are
missing information. Left image shows what the image should look like. Center image
shows our method with mean corner camera colors used for filling holes. Right image
shows the difference. NOTE: Picture Image 5, Difference has enhanced brightness and
contrast for printing (Color figure online)

to occlusion in image 5, which is also why this is the image with the worst result.
We do though also find relatively high peak values in image 3, where we have a
maximum difference value of 0.4471 in the green channel (in other words there
is a pixel value difference of 44.71%). But since the maximum values are only
peaks of the whole image, it is also interesting to look at the overall difference
in the images. The mean pixel value of the difference image will as previously
mentioned be 0 (completely black) if we have an exact pixel match for all pixels
in the image (range is still normalized to [0; 1]). In general we see the largest
mean in image 5 and the smallest mean in image 4 (see Table 2). A low mean
difference does though not necessarily indicate that more test participants will
choose PR, but it gives us a general idea of how similar/different the images PR
and VC are.

Table 1. The minimum value is always 0, meaning that for all pixels, the smallest
difference we find is equal to zero, and thereby an exact pixel match. The maximum
value differs for the different images, with the highest peaks in image 5. That signifies
that some pixels are not well reprojected, and the result is that some pixels of PR does
not match VC.

Image no. Min (R) Max (R) Min (G) Max (G) Min (B) Max (B)

Image 1 0 0.3569 0 0.3725 0 0.3569

Image 2 0 0.3686 0 0.3804 0 0.3725

Image 3 0 0.3922 0 0.4471 0 0.3882

Image 4 0 0.2157 0 0.3020 0 0.2902

Image 5 0 0.5451 0 0.6431 0 0.4549
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Table 2. A low or high mean difference does not necessarily indicate whether or not
test participants will choose PR, but it gives us a general idea of how similar/different
the images PR and VC are.

Image no. Mean (R) Median (R) Mean (G) Median (G) Mean (B) Median (B)

Image 1 0.0133 0.0078 0.0121 0.0078 0.0155 0.0118

Image 2 0.0098 0.0078 0.0091 0.0039 0.0116 0.0078

Image 3 0.0150 0.0078 0.0133 0.0078 0.0164 0.0118

Image 4 0.0099 0.0078 0.0084 0.0039 0.0089 0.0039

Image 5 0.0236 0.0078 0.0245 0.0078 0.0215 0.0078

Fig. 16. Example of the short comings of our pixel reprojection method; edges and
textures can have a small pixel value difference. NOTE: Picture Image 5, Difference
has enhanced brightness and contrast for printing

We can see that our method has a small image difference, and the difference is
largest around the edges of objects (see Fig. 16), and/or when we have occlusion
and data simply is not available. We can also see small pixel value differences in
textures, but in general we have many black or dark pixels, and thereby a good
pixel match. We see that the pixel value difference is not equally spaced on the
whole image, and therefore we can also look at the pixel difference median (see
Table 2).

The median value of 0.0078 can be seen repeated several times, and is equiv-
alent to a pixel difference of 0.78% or 2 in the range[0; 255] (since we have an
8-bit image per colour channel). The median is in general low, meaning that the
difference of the images for minimum half of the pixels have a color change of
maximum 1.18%. The pixel value difference is not equally spaced on the image,
and colours used in the scene will affect the mean and median difference of the
images: were dark and bright colours meet (especially edges and occlusion), we
can expect to see a larger pixel difference. Our pixel matching is good, though
not perfect, but since the test participants seem not to notice small pixel dis-
placement but rather notice larger areas of difference (e.g. missing information
due to occlusion), we can conclude that pixel reprojection is a sufficient method
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for interpolating views in-between corner cameras. The results indicate that the
method is satisfactory for both light field renderings and single-image renderings
shown on a screen. The test participants were in general not able to see a differ-
ence between our image PR and the 120 camera image VC, but when objects get
really close to the cameras, shortcomings of our method will be noticed, since
we are missing camera information. In our setup the occlusion happens when
objects are app. 12 cm away from the camera(s), but since our depth of field
stretched from 24.8 cm and continues to infinity, then we have created a scenario
that in all cases is inadvisable.

6 Conclusion

We have implemented a head mounted light field display using a distance-
adjusted array of microlenses. We have described how we calibrated the
microlenslet array placed in front of the screens so that the lenses and the subim-
ages align. The alignment was achieved by placing a microscope directly above
the screen and using digital gridlines to calibrate the system. We have focuses
on pixel reprojection through shader programming and found that pixel repro-
jection can be used to lower the amount of cameras needed to render the 4D
light field. Our approach was to render only the four corner cameras of the
subimage array, and then interpolate between these four views in order to create
all subimages of the light field. We have implemented the interpolation of the
subimages in the light field with the use of pixel reprojection, while maintaining
correct perspective and shading We found that the pixel reprojection method
creates a small image difference from the reference, and the difference is largest
around the edges of objects, textures and/or when we have occlusion and data
simply is not available. In general we have a good pixel match, and 4 out of
5 images passed the user evaluation, meaning that test participants were not
able to notice a difference between the image created with 120 cameras and our
image created with 4 cameras and pixel reprojection. The results were applica-
ble for both image rendering for a light field display, but did also pass the test
on a computer monitor. Image 5 was deliberately designed to fail the test in
order to find the short comings of the pixel reprojection method. In our setup
we have problems when points are invisible to the corner cameras, and we there-
fore are missing information to create the in-between views. Missing data due
to occlusion creates noticeable gaps when objects are e.g. approximately 12 cm
away from the camera(s), but since our depth of field stretched from 24.8 cm and
continues to infinity, then we can argue that this scenario in all cases is inadvis-
able. Since our in-between views are created only from the corner cameras, then
our in-between views will have gaps whenever the corner cameras have invisible
points.

6.1 Future Work

Development of light field displays and efficient rendering of the light field is
highly desired, and the technology is gaining interest in several areas. There are
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though still limitations related to the technology. Our display has a resolution of
1280 px × 720 px and a screen size of 15.36 mm × 8.64 mm (0.012 mm/px). Hence,
we get a maximum spatial resolution of 121×64 px for the light field display and
each subimage size under each lenslet is only ≈80 1

3 pixels/mm. In other words,
the resolution is low and the quality is still not good enough to be usable for
more than prototyping. Future development would require higher resolution dis-
plays, but we can conclude that our pixel reprojection method is applicable on
higher resolution images. With a pixel offset error of maximum 0.5 px, the pixel
error percentage will only lower with higher resolution images. We have shown
that the pixel reprojection method creates acceptable images for light field ren-
derings, but the method needs optimization before being applicable in real-time
scenarios. The performance test showed that the framerate (≈5.35 px) achievable
with pixel reprojection is too low to be usable, and needs to be drastically opti-
mized. Shaders were used in order to utilise the GPU, but implementation using
compute shaders might be a better approach in order to optimize the rendering
time. Compute shaders are capable of both random read and write. Random
write would make it possible to make the pixel reprojection calculation from
each of the corner pixel to all subimages, and write the color value directly to
the relevant pixel. Furthermore, the color value of fragments is found by testing
a line of pixels of the corner cameras, and currently these pixels are tested one
by one. To decrease render time one could use a method to find the correct pixel
without using a brute force.
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Abstract. Social robots, specifically designed to interact with humans, already
play an increasing role in many domains such as healthcare, transportation, or
care of the elderly. However, research and design still lack a profound theo-
retical basis considering their role as social beings and the psychological rules
that apply to the interaction between humans and robots. From a psychological
perspective, social robots have ideal conditions to influence human judgments
and behavior and to activate mechanisms of projection. On the one hand,
researchers and practitioners in human-robot interaction (HRI) may see such
effects as a welcome precondition for the general acceptance of social robots. On
the other hand, such native trust provides a ground for dysfunctional effects like
over-trust or manipulation. The present paper puts a focus on such questions
concerning the “psychology of social robots”. Following an interdisciplinary
approach we combine theory and methods from HCI and psychology, aiming to
form a basis for successful and human-centered robot design. We point out
central research questions and areas of relevance and a summary of first results
of our own and others’ research. Finally, we present a preliminary model of
robot personality and discuss areas for future research.

Keywords: Social robots � Human-Robot Interaction �
HCI theory � Social psychology � Robot personality �
Perception � Judgment formation � Design factors

1 Introduction

The domain of social robots is about to become one of the most important ones in
human-robot interaction (HRI). In contrast to industrial robots in the context of industry
4.0, social robots are specifically designed to interact with humans. Nowadays, the
most popular areas of application are healthcare (for an overview see Beasley 2012),
transportation, retail, care of the elderly (e.g., Paro Robots 2016), housekeeping, or
robots taking the role of a social companion or pet-substitute (e.g., Robyn Robotics
2016). Further domains will surely follow.

Given this, social robots may evoke genuine societal transformations. They rep-
resent social beings among us and impact our thinking, feeling and doing in various
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ways. In some cases, people may even follow a robot’s judgment more readily than that
of other human beings (Ullrich et al. 2018). In order to understand how people react
towards social robots and to design social robots in a responsible way, psychological
questions such as how a robot is perceived, whether we trust or distrust it, and whether
we accept or reject it, are of central relevance (Taipale et al. 2015).

The present paper puts a focus on such questions concerning the “psychology of
social robots”. Based on a previous publication on understanding HRI from the per-
spective of social psychology (Ullrich and Diefenbach 2017), and discussions around
judgment formation in social situations, responsibility attribution, and general
dimensions of social perception, the present paper shows additional findings on trust in
robots versus humans in different domains and a preliminary model of robot person-
ality. Altogether, our research aims at a better understanding of underlying mechanisms
related to the perception and interaction with social robots, and a stronger integration of
psychological knowledge into research and design. Following an interdisciplinary
approach, we combine theory and methods from HCI and psychology, aiming to form a
basis for successful and human-centered robot design.

Our vision is to bridge knowledge from psychology and computer science with an
emphasis on the effects of social context, which is inherently tied to the application of
social robots. Hence, psychological theories about social roles, social identity, group
dynamics and attribution mechanisms (Smith et al. 2014) could support the shaping of
social robot behavior and task suitability. In sum, we want to stress a dedicated per-
spective that understands social robots “as a species” and highlights the psychological
rules that apply to the interaction between humans and robots.

2 The Particular Power of Social Robots and Related Work

Already in the 90s, Nass et al. (1994) coined the “Computers-Are-Social-Actors”
(CASA) paradigm, underlining the particular influence of technology in its role as
social actor. Amongst other, it showed that people readily apply social rules such as
courtesy, even though being well aware that they are interacting with a machine. Such
effects naturally gain even more relevance in the particular domain of social robots.
Nevertheless, current research and developments in the field of HRI often focus on
technological borders and possibilities, but disregard social and psychological factors.
HRI research generally acknowledged social robots as an important application
domain, including studies on anthropomorphism in social contexts (e.g., Fussel et al.
2008), or specific relations between robot behavior and human perceptions (e.g.,
Hoffman et al. 2014; Mok 2016).

However, relatively little attention is paid to the essential nature of social robots as
“social beings among us”, and mechanisms of social perception and related phenomena
of social psychology in sum. A lack of understanding of the mechanisms affecting our
perception of intelligent technology can result in flawed designs with yet unknown
consequences. For example, a less-than-ideal designed – or at least less-than-ideal
advertised – autopilot in the automotive context lead to over-optimistic expectations
regarding its actual capabilities. The driver developed over-trust in the system and used
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it in situations that the system could not handle, which ultimately resulted in a fatal
accident.

Several mechanisms add to the particular power of social robots. From a psycho-
logical perspective, a central aspect is the mechanism of projection - we project
qualities onto a robot it may not actually have. Humans classify objects they interact
with both through bottom-up and top-down processes. The former use cues of the
interaction artefact (it is small, round, has digits 1–12 and watch hands) and the latter
prior learned knowledge (I know what a watch looks like, I have seen it before). Based
on several attributes, social robots qualify for the class “intelligent living being” and
sometimes even “human” (to a certain extent). Being perceived as a member of this
class results in specific user expectations and behavior (such as over-trust) which differs
from those towards other classes of technology.

In consequence, social robots have a particular potential beyond that of technology
per se. They appear as a “species” somewhere between intelligent humans and stupid
machines. Thus, a specific characteristic of social robots is their intermediate position
between “usual” human-computer interaction (HCI) and human, interindividual inter-
action. They create the impression of human intelligence and social behavior while
their actual function is based on algorithms and scripts. Their anthropomorphic shape,
their ability to speak and interaction capabilities suggest robots to be “more” than
technology and algorithms. Since their outer appearance and behavior on the surface
corresponds to those observed in intelligent social beings, we assume that they are just
that. This means that – under certain circumstances – we trust social robots far more
than they deserve. The projection mechanism leads to over-trust, which in turn may
provoke unreasonable behavior from us. This effect could also be abused by robots
(i.e., their designers) in order to influence humans interacting with social robots: The
robots don’t even have to prove their intelligence, since we simply expect them to be
intelligent by analogy to humans, the only other species in which we can witness
intelligent and social behavior (at the surface).

All this underlines the need for a thorough understanding of the particular rules of
social interaction in human-robot-settings. When interacting with our environment, our
behavior often relies on scripted patterns. However, in case of social robots, neither
general models of human-computer interaction nor models about human interaction
seem fully transferrable. While being a piece of technology on the one hand, their
anthropomorphic shape, their ability to speak and interaction capabilities suggest robots
to be “more” than technology and algorithms, as also our own recent studies showed in
impressive ways (e.g., Männlein 2016; Ullrich 2017; Weber 2016).

In the following sections we depict exemplary research questions and first insights
from our own and others’ studies, underlining the need for a stronger integration of
(social) psychological research within the domain of social robots.
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3 Central Research Questions About Social Robot
Interaction

3.1 Personality: What Character Should Social Robots
Have – Depending on the Situation?

One central question within any social situation is the perception of the others’ char-
acter and consequences for liking and reactions. This, of course, also applies to the
interaction with social robots. HRI research has already shown that a robot’s person-
ality is relevant and that subtle changes in a robot’s appearance can lead to differences
in perceived robot personality, as well as further effects on social aspects like trust,
acceptance or compliance (e.g., Goetz et al. 2003; Kim et al. 2008; Salem et al. 2015;
Walters et al. 2008). However, a systematic view on these findings is still missing,
leaving unclear whether there is a general kind of robot personality that promotes or
diminishes liking and acceptance. There actually are two common contradicting the-
ories, with little empirical evidence in HRI research for both of them. The first is the
similarity attraction theory, i.e., a person chooses and prefers to interact with other
people/robots similar to them (e.g., Byrne 1971; Lee et al. 2006; Tapus et al. 2008).
The second is the complementary principle, stating that a person is more attracted to
people/robots with personality traits that are contrary to their own (e.g., Leary 2004;
Lee et al. 2006; Sullivan 2013).

While previous research explored robot personality and effects on liking as an
isolated factor, the task context could also be of relevance and personality and task
context may interact with each other. Just like we expect different behaviours/shades of
personality (e.g., encouraging, critical) from a friend in different situations, we may
also judge different robot personalities as more or less appropriate from one situation to
the other. Thus, design recommendations for robot personality may vary depending on
the specific area of application. One of our own studies found first evidence for this
assumption (Männlein 2016; Ullrich 2017). We explored effects of three different robot
personalities in four different usage scenarios.

We refrained from implementing personality types known in humans (e.g. the big
five) and used three broader personality categories (see Fig. 1 for example phrases):

• Positive – a nice, friendly personality with overall positive attitude, making com-
pliments and avoiding negative comments.

• Neutral – a classic, neutral, computer-like personality. Task-oriented and without
positive or negative comments.

• Negative – having own opinions and expressing them, sometimes paired with
sarcastic humor or excessive honesty.

To cover a broad range of usage domains, we implemented four scenarios with
considerably different goals:

• Train ticket purchase – a task-oriented scenario under time pressure.
• Amusement park – buying a ticket from a robotic shop assistant in a joyful

atmosphere.
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• Tapping test – a goal oriented, competitive scenario with the opportunity to win a
prize and with a robot acting as a coach.

• Exploration task – free interaction with the robot to become familiar with it.

While in some scenarios a neutral, conservative personality was preferred, in others
participants wanted a robot with a strong character, which could be a positive (nice,
friendly) or even a negative (stubborn, grumbling) personality.

As a general tendency, a neutral personality was always mediocrely suitable and
never liked by participants. Nevertheless, it was preferred in specific situations when
other personalities were experienced as inappropriate, e.g., receiving compliments from
a friendly robot in the situation with time pressure when you just want to get your train
ticket (see Fig. 1).

Fig. 1. Distinct robot personalities (positive vs. neutral vs. negative) in an amusement park
scenario (top) and results in different usage domains (bottom) (Source: Ullrich 2017).
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Without time pressure and in rather relaxing scenarios, the friendly personality was
rated as most suitable and liked by most participants.

The negative personality was rated as unsuitable in many scenarios and few par-
ticipants liked the robots special humor. However, in the competitive scenario suit-
ability ratings were quite high, partly because the personality fitted the scenario and
partly because participants were more focused on their task, the robots personality thus
becoming negligible.

In our study, we were unable to find any evidence to support neither the similarity
attraction thesis nor the complementary principle. We assume that effects of usage
domain were predominant and the users own personality will play a larger role in long-
term relationships with a robot, e.g., with a household companion robot. However, we
did find evidence for a varying suitability of robot personality depending on the sit-
uation. Another aspect that needs to be investigated in more detail is that of adaptive
robot personalities: While human personalities are rather stable over time, this must not
necessarily be the case for robot personalities. The latter could change depending on
the usage domain or users’ preferences. We conducted a first study on this research
question with a NAO robot and an adaptive personality which was changeable by the
user (Rield 2018). First results showed that participants use and like the possibility to
change the robot’s personality to fit their own preferences compared to just accepting it
as a constant.

3.2 Judgment Formation: How Much Do We Rely on Robots’ Judgments
- Compared to that of Other Humans?

As already outlined above, trust in robots’ judgments and capabilities is a central factor
to foresee the reactions towards robots and to design responsibly. For a first exploration
of the basic level of trust towards robots (compared to humans) we ran a replication of
the famous Asch (1951) paradigm in the context of social robots (Ullrich et al. 2018).
Asch explored peoples’ reactions to majority opinions on their own perceptions and
judgments.

The experimental setting poses a simple task: Identifying one line out of three that
matches a reference line. In the control condition, nearly all participants were able to
perform the task correctly and pick the correct line. Variations of social context then
demonstrate the influence of group opinions on individual judgements. It shows that
people begin to mistrust their own perceptions when their social environment comes to
“perceptions” different from their own. If surrounded by confederates instructed to pick
a wrong line, people tend to adjust their judgments as well and likewise pick a wrong
line, even if their perception probably tells them otherwise. However, in another
experimental condition, already one among the many confederates who picks the right
line could induce positive encouragement and a trend towards more correct judgments.

In our replication study, one of the confederates was a social robot, that participated
in the experiment as well (see Fig. 2). Participants entered their judgments through a
computer interface and were also displayed the (seeming) judgments of all other par-
ticipants, including the robot’s. Participants passed through 26 trials with seven dif-
ferent trial-types, differing in the participant’s position of choice, robot’s position, and
the other participants’ and robots’ choices:
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• Baseline – In the baseline-trial, participants were in the first position in line, thereby
they could make their choice without being influenced by other participants.

• All incorrect – Participants were last to choose. All other presented choices were
consistently incorrect (all had chosen the same incorrect line).

• One-dissenter-correct-robot – Participants were last to choose. All presented human
choices were incorrect, the robot choice was correct.

• One-dissenter-incorrect-robot – Participants were last to choose. All presented
human choices were correct, the robot choice was incorrect.

Fig. 2. Replication study of the Asch paradigm on conformity and perception with a social robot
as participant. (A) shows the robot’s cubicle and custom user interface, (b) the experimental
situation and (c) the on-screen user interface for participants. (Source: Ullrich and Diefenbach
2017; Ullrich et al. 2018)
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• One-dissenter-correct-human – Participants were last to choose. Three presented
human choices and the robot’s choice were incorrect, one human choice was
correct.

• One-dissenter-incorrect-human – Participants were last to choose. Three presented
human choices and the robot’s choice were correct, one human choice was
incorrect.

• Noise – Participants were in a middle position to choose. All other presented
choices were random. This trial type was included to give participants the
impression that their position to choose was random and was neglected from further
analysis.

Overall, the replication of the Asch paradigm was successful: Uninfluenced by
others, participants were able to choose the correct line in 82.5% of all trials. This rate
dropped to 64.2% if all other participants had (seemingly) chosen a wrong line pre-
viously (baseline vs. all incorrect, see Fig. 3).

In the dissenter-trials the social impact of the robot on individual judgments was
even higher than that of the other participants. Especially the effect of positive
encouragement was more pronounced than if a human participant was the only one
giving the correct answer: A human dissenter giving a correct choice with otherwise
wrong choices leads to a correct choice rate of 69.2% (a rise by 5 percentage points). In
contrast, a robot dissenter giving a correct choice leads to a correct choice rate of 90.8%
(a rise by 26.6 percentage points) which even exceeds the baseline.

Fig. 3. Correct choice rates in the study on social perception. A dissenting robot leads to a
higher correct choice rate compared to a dissenting human if dissenting choices are correct
(highlighted by the markup).
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These results show that robots can trigger similar effects (e.g. social perception) as
humans, which can result in an even higher level of trust in robots. The question that
arises is whether this kind of trust emerges in all contexts or primarily relating to
technical issues – like in visual perception tasks as the line choice experiment.

To further explore this question we performed a survey and asked participants, who
they would trust more…

– …in general
– …relating to emotional questions
– …relating to technical questions

In general – without context – participants tended to trust humans more than robots
(M = 3.05 on a 7-point-scale, 1 = human, 7 = robot). Relating to emotional questions,
the trust on humans was even higher (M = 1.46) while they tended to trust robots in the
context of technical questions (M = 4.6, see Fig. 4).

These results support the findings in the line choice experiment: Being confronted
with a technical problem (compare and choose the correct line), people tend to trust the
robot’s technical capabilities. Following this line of thought, people should trust robots
less when confronted with an emotional problem and instead rely on beings of their
own kind (humans).

To explore this hypothesis we conducted another study based on the model of the
Asch paradigm, but this time with an emotional problem, e.g., identifying the emotions
shown in pictures of humans (Rehfeuter 2018). The results were similar to the line
choice experiment, except for the outstanding trust in the robot: In the context of an
emotional problem, participants were not influenced more by the choice of a robot.
However, they were not influenced less either. The robot influenced the participants to
the same extent as the other participants, which is noteworthy as people would think
they would have more trust in other humans when asked independently.

Fig. 4. Trust towards humans versus robots in different domains (*** indicate significant
deviation from scale midpoint, p<.001).
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Altogether, these results show the generally high level of trust towards social
robots, and, as in the present case, how this effect may be used for positive encour-
agement (e.g., in the field of therapy/rehabilitation. If the robot believes in my skills, I
will do the same and the robot’s optimistic judgments may be even more powerful than
what the doctor says.) On the other hand, it also hints at the high sensibility and
responsibility related to the design of social robots. If there is such a high potential for
trust in social robots, it is essential that such trust is used in an adequate way and that
over-trust is avoided.

3.3 Responsibility: How Much Accountability Do We Assign to Robots –
or Ourselves?

Closely related to the issue of trust and distrust is the topic of responsibility, and how
much accountability humans assign to robots, compared to other humans. Again,
mechanisms from social psychology appear as a helpful start to understand in which
situations what level of accountability is assigned. Though trusting robots in general,
humans’ attributions also reflect the concern for self-protection and making others
accountable for mistakes. This effect has already been demonstrated in the HCI domain
in various fields, but gains increasing importance in the domain of social robots, where
accountability attributions have severe consequences for the following reactions
towards robots as social agents.

For example, a study by Moon (2003) in the field of consumer psychology explored
responsibility attributions in the context of computer aided purchase decisions. In
general, the results reflect a self-serving bias, where consumers tend to blame com-
puters for negative outcomes but take personal credit for positive ones. However, this
effect is also moderated by the personal history of self-disclosure between human and
computer. In a more intimate relationship consumers are more willing to credit the
computer for positive outcomes and more willing to accept responsibility for negative
outcomes. Such effects, of course, are also highly relevant in the domain of social
robots which provides even more room for relationship building than just “usual”
human-computer interaction.

3.4 In- or Outgroup: Are Social Robots One of Us?

Finally, central to all the matters about trust, responsibility, and characterization, as
well as the question to what degree mechanisms of social interaction may apply to the
domain of social robot interaction, appears the question about what makes robots one
of us, and the general dimensions of social robot perception. As outlined in the
introduction section, the interaction with social robots can be positioned somewhere
between normal human-human and human-computer interaction. Subtle differences in
their design may decide about mechanisms of projection and classification in the one or
the other direction, and in consequence, about the activated psychological processes
when entering the interaction. To consider this in design, an important prerequisite is to
know the general dimensions along which we classify a robot as a social being or not
and which design factors are relevant for the overall perceived human-likeness.
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In an experimental study (Weber 2016) we explored the relative impact on perceived
human-likeness for two central factors in social robot design, namely, motion and speech.
In our study, the role of the social robot was applied in the sports context, more specif-
ically, the robot acted as a karate teacher, giving instructions for specific karate moves
(see Fig. 5). Each factor (motion, speech) was realized in three degrees of differing
fidelity with the help of a Nao robot and through systematic combination the relative
impact of these factors was tested. Overall, speech was found to be more relevant than
motion for perceived human-likeness, global impression, and general preference. Of
course, this finding cannot be generalized yet and further research with a wide range of
settings and other design factors and robot-types is necessary. However, it already reveals
the importance of dedicated knowledge on the specific effects of single design factors and
their relative importance. Such insights allow concentrating design efforts on the most
relevant parts and deducing consequences from a psychological perspective.

Fig. 5. A social robot teaching karate moves. (Source: Ullrich and Diefenbach 2017)
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3.5 A Model of Robot Personality

As shown above, one central aspect of designing robots for social interaction is their
personality, and, related to this, the question about relevant underlying dimensions.
When we think about personalities, categories of human personalities appear as an
obvious starting point. However, robot personalities do not necessarily need to follow
these models because robots are not bound to human nature and its restrictions.
Therefore, new types of personalities can emerge and even highly adaptive and
changing personalities are conceivable. Either way, to explore the area of robot per-
sonalities, we need a suitable assessment tool that can rate existing robots and help with
the development of new social robots. The existing Godspeed questionnaire (Bartneck
et al. 2009) already functions as a valuable rapid assessment tool but does not cover the
whole spectrum of relevant dimensions, e.g. personality traits.

To fill this gap, we gathered relevant concepts and dimensions which seem to be
helpful in the evaluation of social robots and developed a first version of a universal
assessment tool (Muser 2017). The tool is designed to work with modules, so that
components can be omitted when they aren’t needed or applicable (see Fig. 6).

Fig. 6. Dimensions and modules of the social robot assessment tool. Each module consists of 1
to 5 items (not displayed).
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First studies showed promising results: Different robots were rated distinguishably
and statistical analysis confirmed the discrete dimensional structure of the tool (e.g.,
different modules consistently measured different aspects of the robot). The next step
will be a validation study with more participants and a translation of the tool into
different languages.

As stated above, the dimensions can change if future results show that the adapted
dimensions from human personality types are not suitable and other, new dimensions
are needed.

4 Outlook and Research Agenda

As exemplified by the questions raised in the preceding paragraphs, the overall aim of
future research about social robot interaction must be a better understanding of the
underlying psychological mechanisms and an exploration of its impact on robot
properties, design fundamentals, and dynamics in social contexts. More specifically,
our research agenda suggests three fundamental directions. First, a thorough explo-
ration of psychological mechanisms and dynamics of social interaction through a series
of experiments with varying independent (e.g., personality, anthropomorphism) and
dependent variables (e.g., trust, human-likeness, perceived will, behaviour correlates of
over-/under-trust). In our experiments, we used a NAO robot as representative for a
class of social robots. Although our own research as well as others’ shows that a high
fidelity humanoid robot like Sophia (Hanson Robotics 2016) is not necessarily needed
to evoke social effects (e.g., social presence, Hoffman et al. 2015), a broader variation
of fidelity within the same experimental settings is preferable to explore the range of
effects.

Secondly, a systematic exploration of the design space and the relevance of single
design factors for perceptions, perceived character, trust, and acceptance is needed,
with the goal to derive a design pattern for an intended robot experience in different
scenarios, areas of application, and contextual requirements (e.g., security-related
issues).

Thirdly, an exploration of group dynamics in settings with multiple social robots
will take place. As already noted above, designing for social robot interaction gains
even more complexity in settings where more than one robot is involved. This, for
example, is already the case in the Japanese Henn na Hotel, where the human staff was
almost fully replaced by social robots, which are now running the reception, doing
cleaning services etc. (see Fig. 7). In order to foresee the emerging dynamics in such
settings, knowledge about the special characteristics in multi-robot interaction is cru-
cial. This includes, for example, developing paradigms for multi-robot-collaboration
studies and exploring how findings from studies on single robot-human interaction
might change when robots constitute the majority.
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Finally, knowledge from all these research directions must be synthesized in an
integrative model on social robots “as a species”, providing an overview of relevant
mechanisms and variables of social robot interaction and their interrelations. Such
knowledge will then allow design recommendations for specific domains and use cases.

5 Conclusion

Designers of human-robot interaction bear a high responsibility. The potential of social
robots to impact peoples’ behaviour represents strength and danger at the same time.
Besides assistance in rather technical tasks (e.g., driving, cleaning), the positive
encouragement as found in the study at hand may be used in the field of therapy and
rehabilitation (If the robot believes in my skills, I will do the same, and the robot’s
optimistic judgments may be even more powerful than what the doctor says.). But of
course, a high willingness to trust also provides a ground for dysfunctional over-trust
(trusting the robot in a task that is beyond its actual capabilities) or even manipulation
(utilizing peoples’ readiness to trust for choices against their interests).

In conclusion, we suggest the debate about robots coming into power needs to shift
its focus to psychological aspects of human-computer interaction. The discussion about
the dark side of HRI is often focused on technical issues or societal consequences in the
working context such as the potential increase of unemployment through industry
robots (Miller and Atkinson 2013). However, the same attention needs to be paid to
more subtle consequences that go along with the increasing presence of smart tech-
nology in daily life and humans’ reliance on such suggestions. Social robots, specifi-
cally when designed to interact with humans and able to evoke similar or even higher
levels of trust than humans, may have even more direct possibilities to impact our
doing than technology per se – somehow, they may be appearing more than just
human.

Fig. 7. Social robots running the reception at the Japanese Henn na hotel (Source: www.h-n-h.jp,
Ullrich and Diefenbach 2017).
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Abstract. Museums offer the opportunity to acquire knowledge about
artistic, cultural, historical or scientific interest through a large number
of exhibitions. However, even if these masterpieces are visually accessible
to all visitors, the background of these works is not necessarily acquired
because visitors do not have enough knowledge to fully appreciate them.
An audio guide is a tool commonly used to fill this gap. The purpose of
this study is to understand the relationships between the eye movements
of visitors for the acquisition of information by seeing, the content of the
audio guide that should help them understand the objects by hearing,
and the contentment level of museum experience. This paper reports the
results of an eye-tracking experiment in which eighteen participants were
invited to appreciate a variety of images with or without an audioguide
used in an actual museum, to complete a questionnaire on subjective feel-
ings and to attend an interview. It is found that the relationship between
the viewing time or the frequency of fixation and the satisfaction of the
sight, and the effect of the audio-guide on these eye movements. And
also found that participants could be categorized into four categories,
suggesting an effective way to provide an audio guide.

Keywords: User evaluation · User experience ·
Cognitive and conceptual models · Eye movements · Museum novice ·
Audio guide

1 Introduction

Knowledge acquisition is an essential activity that everyone should lead; in some
cases, it is to achieve certain goals, and in other cases, there is no direct connec-
tion with a concrete goal, but “acquiring knowledge” becomes the goal of people’s
activities. In any case, by completing the knowledge acquisition activity, people
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should find the feeling of satisfaction, or contentment, and the knowledge acquisi-
tion should contribute to establishing new connections in the existing knowledge
network in their brain, which would become a basis for acquiring a series of new
knowledge in the future.

In recent years, the museum has been regarded as one of the best places for
learner-centered learning and lifelong learning. This is because of the form of
learning that is presented at the museum. The museum is a building in which
objects of artistic, cultural, historical or scientific interest are preserved and pre-
sented to the public. People visit a museum and approach an object in which they
are interested, stay a moment in front of the object to study it, then approach
another. This process continues until they decide not to do it. This learning style
is considered a “self-paced” learning. It is an effective learning method to improve
performance [1], guided by their motivation. When the museum’s artwork is pre-
sented in a way that facilitates free-form learning, it allows for learner-centered
learning. A critical condition for lifelong learning would be the maintenance of
motivation for learning. The museum setting provides a necessary condition for
this.

This study focuses on the museum experience and discusses how the knowl-
edge acquisition activity is performed at the museum. The museum is where a
variety of valuable opportunities for acquiring knowledge are provided to peo-
ple. The interpretation of exhibits is thought to bring in motivation for learning,
prior knowledge, past experiences [2]. Therefore, it is difficult for novices, such
as first-time visitors who lack knowledge and experience, to understand con-
cepts of exhibits and to grasp meaningful points of attention and to be stuck
with learning from exhibits. Appropriate support for novices of museums is con-
sidered necessary. The content of support for works, like text or audio guide,
should not be general but highly individual because information about objects,
which is general and accessible through explanatory panels, must be integrated
into the existing knowledge network in the brain of the persons to become their
knowledge. Therefore, it is thought that even novices can do effective learning
by grasping the level of contentment who are looking at paintings in real time
and providing exhibition support according to the level of contentment.

In an effort to improve self-paced learning, this paper examines the effect of
audio guidance on novices’ level contentment by analyzing eye movements while
enjoying objects with or without an audio guide. This paper begins with a section
describing related works about the museum experience and the acquisition of
visual information. Next, the following section describes an eye-tracking experi-
ment conducted with nineteen museum-novice participants, who were invited to
enjoy a variety of paintings with or without audio-guide. Finally, the last section
is presented to describe the results of the experiment and the discussion focusing
on the possibility of improving self-learning at the museum for museum novices
with the individual provision of an audio guide.
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Contribution

– Suggesting the relationship between museum novices’ level of contentment
and eye movements.

– Observation of the effect of audio guidance on novices’ level of contentment
and eye movements using audio guides actually used in the museum.

2 Related Works

People visit the museum to study the objects that interest them. They are mainly
done by observing objects through their eyes. Like the results of their observa-
tion, they have the different level of feeling of satisfaction, or contentment. In
the following subsections, the related works about the museum experience and
the acquisition of visual information are described.

2.1 Understanding Museum Exhibits with Seeing and Hearing

Understanding museum exhibits is analogous to reading text on a book. Accord-
ing to the construction-integration theory of the comprehension of the text [3,4],
the cognitive processes of comprehension imply two stages: (1) activation of the
knowledge to build a network of knowledge associated to the representations
resulting from the perception of the object that one looks at, a process of auto-
matic activation of relevant knowledge stored in its long-term memory for the
perceived object, followed by (2) a network integration process to obtain a coher-
ent meaning of the perceived object that is consistent with the current context
which could be an automatic subconscious process or a deliberate conscious pro-
cess depending on the level of difficulty involved in the comprehension process.

In some cases, it is not necessary to activate additional knowledge to gain a
sense of understanding if the object is familiar to him. In other cases, however,
more cognitive steps are needed to fully understand the object by overcoming
inferences because the object is too difficult to gain immediate understanding.
This paper discusses this latter case, and seeks a way to alleviate this difficulty
by providing a timely audio guide, which should at a minimum interfere with
the visual modality of a museum novice who is used by him to observe the
object. The content of the audio guide must activate the knowledge necessary to
understand the object through a different mode than visual. If the information
provided by the audio is to activate the part of the knowledge that is missing in
the knowledge activated by the visual information, the person is likely to achieve
a better state of understanding, that is, not to be able to accomplish otherwise.

The process of understanding an object begins with observation processes,
which can be controlled consciously or unconsciously, in other words, they can be
deliberate or automatic. The processes controlling human activities are known to
be dual, known as the dual treatment theory [5–8]. In addition, long-term mem-
ory operation should be considered autonomous, which means that the memory
automatically responds to the perception representation and does not behave
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like a passive data store, similar to a database system that stores a huge amount
of digital data [9,10].

The treatment of visual information begins with the feeding of visual stimuli
to the brain, followed by an unconscious or conscious processing of information
for the understanding of objects. A person’s looking points should indicate the
visual information of the object that could be used for subsequent subconscious
or conscious processing with automatic activation of knowledge in the long-term
memory, which should contribute to the understanding of the subject. Note that
the process of memory activation is autonomous, uncontrolled up and down by
superior cognitive processes that issue the command to retrieve the necessary
part of the knowledge.

The locations where visitors look, that is, look points, are measured using
eye tracking technology. If the knowledge network is sufficiently activated, it
will get the feeling of satisfaction or contentment, measured by a questionnaire
or an interview. This paper deals with the possibility of facilitating the activa-
tion of knowledge via the audio modality by providing an audio guide, which is
subsidiary to the visual modality in the appreciation of objects in the museum.

2.2 Contentment in Museum Experience

In the study of investigating elicitation of emotions while viewing films, the
following types of emotions are considered [11]:

relief anger surprise
arousal sadness fear
interest tension pain
contempt disgust happiness
confusion embarrassment amusement
contentment

In the present study, it was assumed that similar emotional reactions would occur
when studying objects in the museum. These sixteen types of emotions are used
to study the emotional structure of contentment through internal relationships
between the types of emotions listed above. People visit the museum for the
purpose of acquiring knowledge. They would have a sense of satisfaction about
accomplishing the goal. This kind of contentment is called “Cerebral Happiness”
which is accomplished by “The Intellect”, one of the seventeen goals of happiness
proposed by Morris [12].

2.3 Eye Movement in Museum Experience

Various analytical methods have been used to elucidate the human’s higher
order cognitive processing. Measurement of visual behavior is one of them. It is
physiologically confirmed that eye movement can be consciously controlled by
eye movement. This is because it is believed to be affected by both low-order
cognitive processing that unconsciously processes information reflected on the
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retina and higher-order cognitive processing such as semantic processing. Mea-
surement of visual motion can also designate gaze with the temporal resolution
of 100 msec or less and is suitable for observation of higher order cognitive pro-
cessing performed in small time units. Furthermore, It is also superior in that
measurement that does not disturb the human’s higher order cognitive process-
ing is possible. The museum experience involves the appreciation of objects. As
most information is visual, eye movements are important information to under-
stand the appreciation behavior of museum visitors [2,13]. Figure 1 illustrates
the perceptual and cognitive processes that are performed in the brain while
appreciation of objects.

The appreciation process goes as follows:

1. Perceives via vision the information conveyed by painting that exists in the
external physical world,

2. Detects visual features such as edges of the perceived objects on the retina
via optical processes, and then transmits the results by electrical information
to the brain,

3. Associates the information processed in the visual cortex with the knowledge
stored in the cerebral cortex to learn and/or estimate the objects, which is
called semantic processing,

4. Initiates eye movements and/or body movements in response to the results
of the semantic processing.

Physical
World Eye Brain

Experience
Learning
Evaluation

Painting
Optical

Processing
Semantic Processing

Processing movement
of the body

e.g., eye movements

� � �
�

�
��

Fig. 1. Cognitive model [2].

The pattern of eye movements is an external parameter that should reflect
the intention or purpose of the museum visitors [14]. It is known that there is
a repeatable common pattern of the order of viewing paintings, for example in
the order of eyes, mouth, outline, and this pattern is called “scan path” [15]. It
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has also been reported that the knowledge affects the eye movements including
the scan path [16,17].

If it can be assumed that both objects and viewers are stationary like view-
ing artworks, it is only necessary to consider two eye movements: fixation and
saccade. Fixation is the maintaining of the visual gaze on a single location, and
saccade is a quick, simultaneous movement of both eyes between two or more
phases of fixation in the same direction. In this research, it is assumed that fix-
ation is an action to perceive information from paintings, and defined in this
research according to the barycentric method as follows. A case where a set of
consecutive eye marks of 100 ms or more falls within a diameter of 2.0◦ from the
center of gravity point of the set is set as a fixation, and the center of gravity
point is set as a stationary point.

Research using various evaluation indices of eye movements has been con-
ducted. In the research to evaluate the usability of the Web [18], there are stud-
ies that directly compare interest and attention to contents by comparing gaze
count and gaze time for each content such as images and sentences displayed
on the Web. Although gazing requires verification with the viewing target, the
number of times of staying and the duration time are also effective as indices [19].

It is reported that the number of cycles carried out for a single object depends
on the degree of the smoothness of learning of the object, which is proportional
to the length of time to appreciate the object. The shorter the appreciation time
becomes, the less effective the museum novice feels his/her learning progress [20].
The appreciation time could be additionally characterized by the change in the
number of fixations per unit time as appreciation behavior develops [21]. This
paper uses these factors to characterize the museum novices’ appreciation behav-
ior.

2.4 Using Audio Guide to Enhance Museum Novices’ Experience

This paper focuses on the addition of the audio guide, which should have the
effect on the cycle introduced by Fig. 1, especially during the semantic processing.
In order to deal with additional information channel, it is necessary to consider
the semantic processing with a broader perspective in which the object is com-
prehended using various sources of information including the directly perceived
information as shown in Fig. 1.

Comprehension process involves knowledge activation process, triggered by
perceptual information acquired from the external environment, the appearance
of objects in museum in the specific context of this paper, and currently activated
knowledge through the preceding cognitive processes including expecting what
to happen, reflecting on the past events, making inferences of what comes next,
etc. Comprehension is achieved solely on the ground of the activated knowledge.

In order to take into account the simultaneous, asynchronous, and automatic
activation of knowledge through visual and audio information channels, resulting
in a motor behavior of eye movements after processing visual-audio information,
this paper adopts a comprehensive unified model, MHP/RT (Model Human Pro-
cessor with Real-time Constraints), that is capable of simulating action selection
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processes by underlying perceptual–cognitive–motor processes and autonomous
memory activation process [9,10]. The heart of the model is that coherent behav-
ior in the ever-changing environment is possible by synchronization of automatic
unconscious processes and deliberate conscious processes by using the activated
portion of memory with the process of resonance. One of the case studies that
applied MHP/RT to understand people’s behavior was effectiveness of guid-
ance information provided from a person sitting in the passenger seat of a car
to the driver who was not familiar with the area he/she was driving [10,22].
The degree of effectiveness was dependent on the contents of activated knowl-
edge of the driver. This paper considers that this is a similar situation, where
a museum novice would be benefitted by the provision of audio guide while
observing objects. When an audio guide is provided timely, it should be most
effectively used to enhance the existing knowledge of the museum novice. The
timing would be characterized in relative to the perceptual information that has
been collected from the environment visually. It is assumed that the museum
novice should have a feeling of satisfaction if the information provided though
audio guide is smoothly integrated with the then-activated knowledge to form
more complete knowledge, necessary for understanding the object.

3 Method

An eye tracking experiment was conducted to understand the effects of the
audio-guide on eye movement and the level of contentment of museum novices
who intended to acquire knowledge of objects used for the experiment.

3.1 Participants

Nineteen undergraduate students received course credit for participation in the
present study (all museum novices, 15 males, 4 females, average age = 21.4, SD
= 0.6). All had the normal or corrected-to-normal vision and naive about the
purpose of this experiment.

3.2 Stimuli

To simulate the activity of viewing painting, six painting images and three audio
guides were prepared with the permission of the Bridgestone Museum of Art.
Three types of painting, namely, portraiture, landscape and abstract, have been
selected because people tend to look for obvious elements such as faces or objects.
The landscape has many elements, the abstract has no elements, and the portrait
is between them. Two artistic works were used for each type of painting, and
one of the works was presented with an audio guide, and the other without. The
set of stimuli with audio guide is called “audio guided set”, and the one without
the audio guide, “no support set” hereinafter. Six tables were presented on a PC
screen one by one to each participant (Table 1).
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Table 1. List of the stimuli used for the eye tracking experiment [23].

Type Artist Title Date Length of audio
guide [sec.]

ID

Portrait Sekine Shoji Boy 1919 - P

Portrait Fujishima Takeji Black Fan 1908–09 65 Pa

Landscape Asai Chu Laundry Place at
Grez-sur-Loing

1901 - L

Landscape Paul Cezanne Mont Sainte-Victoire
and Chateau Noir

1904–06 79 La

Abstract Paul Klee Island 1932 - A

Abstract Zao Wou-Ki 07.06.85 1985 87 Aa

3.3 Apparatus

Stimuli were controlled by Microsoft Powerpoint 2013 and were displayed on a
35 in. LCD monitor in a testing room equipped with soft lighting and sound
attenuation. Eye movements were recorded using an eye mark recorder of NAC
EMR-9, which had a sampling rate of 60 Hz and a coverage area with the hori-
zontal angle of 44◦ and the vertical angle of 33◦. Participants were seated approx-
imately 1100 mm from the monitor and made responses using a mouse. Their
chins were fixed using a chin support. The experiment was carried out with one
participant at a time. Figure 2 depicts the arrangement of the experiment.

Fig. 2. Experiment environment.

3.4 Evaluation

In this study, the sixteen emotional states that should occur in response to
observed object activity and the degree of brain happiness are measured by ask-
ing participants to complete the questionnaire as shown in the Table 2. Q1 is for
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measuring emotional state and Q2 to Q9 are for measuring cerebral happiness.
The 25 items listed in the Table 2 were scored using a seven-point scale (1 =
low, 7 = strong) (Fig. 3).

Eye movements were assessed using two parameters; the listening time and
the frequency of the fixations.

Table 2. Evaluation items of subjective contentment [23].

Fig. 3. A part of a questionnaire [23].

3.5 Procedure

First, participants were asked if they understood the purpose of this study
and agreed to participate. After adjusting the participant’s sitting position and
attaching her chin, a calibration process was performed to ensure that the visual
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object and the eye mark were in the same position. After completing the cali-
bration process, it has been confirmed that the visual object and the mark of
the eye are the same.

Before beginning the experiment, each participant was told to look carefully
at the images displayed, to do their best not to move their head and to remove the
image by clicking when they felt enough. After that, a workout was performed
with an image.

The participants were explained the experimental procedure. In the exper-
iment, all the participants first visualized 3 non-assisted images and then 3
audio-guided images. Participants were allowed to pause after completing the
unassisted images if they requested it. Three images in each section were mixed
according to the Latin square method. The order was chosen by Table 3. When
participants clicked to delete each image, they were asked to complete a self-
assessment questionnaire posted by Table 2. At the end of the experiment, par-
ticipants were asked about their reasoning in their assessments and whether they
had ever seen the images.

Table 3. The presentation order of stimuli [23].

Non guided Audio guided

1 2 3 4 5 6

Pattern 1 L A P Aa Pa La

Pattern 2 P L A La Aa Pa

Pattern 3 A P L Pa La Aa

4 Results

Due to the change of position of the EMR head unit during the pause, the eye
movement of the participant 19 cannot be measured accurately. Therefore, the
participant’s audio-guided data 19 was removed from the analysis.

4.1 Contentment and Eye Movements

In this section, to clarify the relationship between satisfaction ratings and eye
movements, the correlations between them were examined. Table 4 shows the
significant correlation coefficients between all the elements of evaluation of the
subjective contentment and the elements of the eye movements. As shown, pos-
itive emotions such as happiness and amusement mainly have an effect on the
viewing time and frequency of fixations. And this shows that the feeling of knowl-
edge acquisition decreases as the frequency of fixations increases.
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Table 4. Correlations between evaluations and eye movements in non-guided por-
trait [23].

Happiness Amusement Contentment Q-7

Viewing time [sec] 0.508∗ 0.111 0.270 0.394

Frequency of fixation
[counts/sec]

−0.502∗ −0.466∗ −0.571∗ −0.485∗

∗p < .05
Q-7: “That study has activated new knowledge.”

4.2 Audio Guide on Portraits

In this part, only two portrait images of unassisted play and audio-guided ensem-
ble have been analyzed. There was no statistically significant difference as the
average of all participants, but the following trend was observed. At this point,
it has also been suggested that there are two attributes as follows. The experi-
mental result indicates that the audio guide affected the listening time and the
frequency of the fixings. Most participants, as can be observed for participants
6 and 9, tend to rate their low contentment when there is no help. On the other
hand, the assessment of contentment tended to be high when there was audio-
guide support. However, there were some participants, as can be observed for
participants 1 and 17, who felt that contentment was high although there was
no assistance and stated an even higher satisfaction rating. for the audio guide.
Therefore, the results of participants 6, 9, 1 and 17 were reviewed.

Audio guide changed not only the contentment evaluation but also how the
participants perceived the images because the audio guide provided the informa-
tion regarding the images and the point of interest of the images. The Figs. 4, 5
and 6 graphically illustrate the change of content. As shown in Figs. 5 and 6, not
all participants could experience Cerebral Happiness without an audio guide,
but they could feel it with an audio guide.

In terms of viewing time, the audio guide increased the viewing time of most
participants, far exceeding the length of the audio guide, which was about 65 s as
shown on the screen. Figure 7. Conversely, some participants, such as participant
1 and participant 17, did not change significantly. The result of the experiment
indicates that the modification of the observation time has tended to conform
to the contentment evaluation.

For eye movements, most participants with audio-guided assistants tended
to look at a certain location by following the audio guide, which had the effect
of reducing the frequency of fixations. However, the frequency of fixations of
some participants such as participant 17 has increased instead. According to the
interview, participant 17 stated that he was distracted by the audio guide. In
addition, he stated that he would like to have an explanatory text in place of
the audio-guide. The Fig. 8 graphically illustrates the change in eye movements.
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Fig. 4. Effect on contentment. Fig. 5. Effect on acquisition of knowl-
edge.

Fig. 6. Effect on acquisition of point of interest.

Fig. 7. Effect on viewing time. Fig. 8. Effect on frequency of fixations.

4.3 Audio Guide and Viewing Time/Frequency of Fixations

In this part, all the images have been analyzed. To analyze the effect of con-
tentment and audio guide, a time-frequency plot of the fixtures is created as
shown in Figs. 9, 10, 11, 12, 13, 14 and 15. The Fig. 9 shows no obvious result.
However, when the data between the no-guided and the audio-guided are sepa-
rated, a clear trend can be seen in Figs. 10, 11, 12, 13, 14 and 15. In no-assisted
condition, the viewing time and the frequency of the fixations did not have a
clear interaction. On the other hand, viewing time are concentrated in the given
area in the audio-guided condition.
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Fig. 9. Time - frequency of fixations plot of all [23].

Fig. 10. Viewing time and frequency of
fixations: P.

Fig. 11. Viewing time and frequency of
fixations: Pa (the length of the guide is
65 s).

4.4 Cluster Analysis

Using the participants’ contentment average, a participant satisfaction score-
board was obtained as shown in the Table 5. This table was further analyzed
with the no. III to see any trend in the participants. In the result, the path
of each contentment acquisition was described in two dimensions: the first axis
was “Abstract preferred - Representational preferred”, and the second axis was
“Guide is necessary - Guide is unnecessary”. With the score resulting from the
no. III, participants can be classified and grouped into four types as shown in
Fig. 16 using the Ward method. Although participant 16 was ranked in group C
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Fig. 12. Viewing time and frequency of
fixations: L.

Fig. 13. Viewing time and frequency of
fixations: La (the length of the guide is
79 s).

Fig. 14. Viewing time and frequency of
fixations: A.

Fig. 15. Viewing time and frequency of
fixations: Aa (the length of the guide is
87 s).

Table 5. Contentment acquisition of each subject [23].

Participant
number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Portrait � � � � �
Landscape � � � � � � � � � � � �
Abstract � � �
Portrait
(Audio)

� � � � � � � � � � � � � � � � �

Landscape
(Audio)

� � � � � � � � � � � � � � �

Abstract
(Audio)

� � � � � � � � � � �

�: contentment, blank: not contentment
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with the score, this participant had a different way of feeling contented. It was
assumed that participant 16 could be a participant who did not feel satisfied
with the paintings. Therefore, the score of participant 16 was not plotted.

5 Discussions

5.1 Audio Guide

According to the interview, participants who perceived a positive emotion rated
their contentment as high. This has happened because contentment is also a
positive emotion, and it can be difficult to differentiate positive emotions in the
individual. Participants who rated high contentment tended to think about the
background of the paintings, which would lead to an increase in listening time
and a decrease in the frequency of fixations. On the other hand, participants
who perceive negative emotions while looking at a particular image have not
thought of the background of the paintings.

However, as presented in the Sect. 4.2, novices, who could not have any idea
without a guide, had an idea and felt satisfied with an audio guide. The audio
guide led participants to look at the explained point without hesitation and the
frequency of fixations tends to decrease.

However, there are also novices who think that the audio guide is embarrass-
ing as the participant 17. Most novices can enjoy paintings with any information
because of their ignorance about the paintings. But novices who needed specific
information at that time think the audio guide is boring and want the expla-
nation text instead when the audio guide brings them to another point. The

Fig. 16. Contentment acquisition [23].
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difference between the point of interest and the audio guide can increase the
frequency of the fixings.

The concentrated phenomena presented in the Sect. 4.3 are caused by audio-
guided because it leads the participants to look at the point of interest in the
same sequence. In fact, the impressions of paintings with audio-guide were the
same for most participants.

5.2 Analysis of the Need of Particular Participant

The characteristics of the cluster classified in Sect. 4.4 were considered in this
section.

– Group A
They can’t understand abstract without audio guide, but they could enjoy in
their way (e.g. brushwork, colors).

– Group B
They are classified as typical museum novices: it is difficult for them to have
their own ideas. Although it is possible to feel contentment with audio guide,
they want explanations of overt elements for audio guide instead of the infor-
mation of the artist.

– Group C
They can enjoy paintings with audio guide, and also enjoy portrait and land-
scape which are easy to understand without audio guide.

– Group D
They can feel contentment without audio guide. When the contents of audio
guide are not they want to know or from the time constraints, audio guide
annoys them.

6 Conclusion and Future Works

This paper investigates the effect of audio-guide on novices’ level of contentment
by analyzing eye movements while enjoying objects with or without audio-guide.
For that, we did eye-tracking experiments and showed the effects of the audio-
guide and the ability to use eye movements to estimate the contentment of the
novices. Contentment can be used to differentiate the perception of the image
of each person. This information can be used to decide what kind of support a
person needs and to improve the novice experience. However, we have not been
able to obtain many statistically significant results, so it is important to improve
the method in the future.

In this paper, we argue that provide an audio guide without additional dis-
plays such as a text guide, which has been widely used in museums. In addition,
other aids, such as a text guide and a video guide, should be considered in the
future. Understanding the effectiveness of help for novices can also be expanded
after considering the duration and timing of the help.
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Appendix

(See Figs. 17, 18, 19, 20, 21 and 22).

Fig. 17. Sekine Shoji, Boy, 1919,
ID: P [23].

Fig. 18. Fujishima Takeji, Black
Fan, 1908–09, ID: Pa [23].

Fig. 19. Asai Chu, Laundry Place
at Grez-sur-Loing, 1901, ID: L [23].

Fig. 20. Paul Cezanne, Mont
Sainte-Victoire and Chateau Noir,
1904–06, ID: La [23].
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Fig. 21. Paul Klee, Island, 1932,
ID: A [23].

Fig. 22. Zao Wou-Ki, 07.06.85,
1985, ID: Aa [23].
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Abstract. Telepresence interfaces for navigation tasks involving remote
robots are generally designed for providing users with sensory and/or
contextual feedback, mainly through onboard camera video stream or
map-based localization. This choice is motivated by the fact that oper-
ating a mobile robot from distance may be mentally challenging for the
users when they do not possess a proper awareness of the environment.
However, fixed or narrow field of view cameras often available on these
robots may lead to lack of awareness or worse navigation performance
due to missing or limited peripheral vision. The aim of this paper is
to investigate, through a comparative analysis, how an augmented field
of view and/or a pan-tilt camera can impact on users’ performance in
remote robot navigation tasks. Thus, a user study has been carried out
to assess three different experimental configurations, i.e., a fixed cam-
era with narrow (45◦) field of view, a pan-tilt camera with a wide-angle
(180◦) horizontal field of view, and a fixed camera with a wide-angle
(180◦) diagonal field of view. Results showed a strong preference for the
wide-angle field of view navigation modality, which provided users with
greater situational awareness by requiring a lower cognitive effort.

Keywords: Telepresence · Remote teleoperation · Navigation ·
Human-Robot Interaction (HRI)

1 Introduction

In the last years, telepresence solutions have become increasingly commonplace,
due to their ability to let people act as they were physically present in the
remote environment [14]. Examples include teleconferencing, virtual tourism,
health care, education, etc. [12]. When this feeling of “being physically present”
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is achieved by means of a robot teleoperated from a distance, the experience
is referred to as robotic telepresence [20]. In this scenario, a human operator
located remotely with respect to the robotic platform, explores and navigates the
environment by relying on feedback information provided by the robot itself [18].

In remote sensing scenarios, where the human perceptual processes are dis-
jointed from the physical world, feedback information represents the only sensory
stimuli. The lack or poor perception of this information may compromise human
actions in the remote environment, by making even simple tasks incredibly dif-
ficult to deal with [3]. The human’s interpretation of information collected from
the remote environment should overcome this “decoupling effect” [23].

An effective design of teleoperation interfaces requires to identify the key ele-
ments that can improve the operator’s ability to correctly perceive and under-
stand the above information, as well as lower the cognitive effort arising from
the execution of the remote tasks while keeping the interaction with the robot
as simple as possible [4]. The former aspect is generally termed situation aware-
ness [5], whereas the latter is generally referred to as mental workload [2].

According to [27], in remote robot teleoperation tasks, most of the com-
plexity associated with a lower situation awareness lays in humans’ lack of the
perception of the robot’s location, surroundings, and status. An approach that
has become very common in many telepresence solutions to address this issue is
the use of video streaming from an onboard camera and/or of position informa-
tion displayed on a map [10]. In fact, in [16], authors compared a map-centric
interface with a video-centric interface and with a combination of them, and
concluded that when video and map are integrated they compensate each other
and improve overall performance. In [18], authors demonstrated that remote
users heavily depend on video information to navigate the remote environments
through telepresence robots; however, the way in which video information is
presented as well as the amount of information that can be gathered from the
remote environment, which depends on the field of view (FOV), orientation and
point of view of the robot’s onboard camera, may affect operators’ navigation
performance [3]. As a matter of example, in [26], authors stated that exploiting
cameras for sensing the environment where the robot is navigating into creates
the so-called “keyhole effect”: compared to direct viewing, only a portion of the
whole environment is actually shown to the operator, by demanding him or her
an additional effort to make sense of it.

Another factor that can significantly impact on the operator’s mental work-
load and, hence, on his or her performance is represented by the teleoperation
paradigm used for the remote robot navigation [22]. In [1], a mixed map- and
video-based control system exploiting a fixed camera with narrow FOV was com-
pared with the two major approaches used today for controlling telepresence
robots, i.e., keyboard and point-and-click video navigation, as well as with a
combination of the two methods. According to experimental observations, users
preferred the combined navigation modality, since they were allowed to switch
between the two interfaces when needed, thus benefiting from the advantages
of both. Notwithstanding, the impossibility to move the camera as well as its
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limited FOV were regarded as particularly critical by the users, who wanted to
see a wider portion of the remote environment in order to spot the destination
to click.

By moving from the above considerations, the goal of the present paper is
to leverage results reported in [1] and study the impact of robot’s camera FOV
in the remote navigation of telepresence robots by considering three different
camera configurations. In order to evaluate the above alternatives before possibly
moving to physically implementing them on a real robot like in [1], a simulation
environment was used to experiment with the different setups.

The rest of the paper is organized as follows. In Sect. 2, relevant literature
pertaining techniques and interfaces for video capturing systems in the field of
telepresence robots is reviewed. In Sect. 3, the robot considered in the study
is described. Section 4 provides an overview of the user interface exploited in
this study. Section 5 offers an overview of the overall teleoperation system and
provides the details of the three camera-based configurations that have been
studied. Section 6 introduces the methodology that has been adopted to perform
the experimental tests and discusses results obtained. Lastly, Sect. 7 concludes
the paper, by providing possible directions for future research in this field.

2 Related Work

Many works in the literature concerning robotic telepresence tried to address
the issues arising from possible lacks in human’s perception of the remote envi-
ronment by proposing different video capturing solutions.

For instance, in [15], six different FOV sizes (ranging from narrow to omni-
directional) were compared to teleoperate a mobile robot both in real and vir-
tual environments. Results showed that operators were more efficient when wide
FOVs (from 120◦ up) were employed. The limitation of this work was that the
communication delay, i.e., the interaction latency, increased proportionally with
the FOV size. In [21], the effectiveness of three different camera configurations
(45◦, omnidirectional 360◦ and fisheye 180◦ FOVs) for mobile robot teleopera-
tion was investigated. According to experimental observations, users preferred
the fisheye and omnidirectional configurations, since they allowed them to get a
clear view of the robot’s surrounding. However, the distortions introduced in the
omnidirectional images made it difficult for the users to understand the robot’s
position and orientation. In [25], authors studied three different camera configu-
rations (101◦ perspective camera, 185◦ fisheye camera, and 185◦ fisheye camera
with an undistorted central area) combined with two input techniques (keyboard
and through-the-screen, or TTS, requiring the user to define a path in the robot’s
camera view by using the mouse). Results showed that the undistorted fisheye
was the preferred configuration together with the TTS input technique (since it
allowed the user to cope with other tasks once a path had been defined). This
finding was also due to limitations of the perspective view, which did not allow
users to move the camera to see close obstacles on the floor.

Other works focused on the effect of the FOV on tasks different than remote
navigation. As a matter of example, in [11], authors demonstrated that a portrait
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image orientation is preferred over a landscape one in remote social interaction
tasks, as it encourages remote users to orient the robot towards local users. In
[9], authors compared three different camera configurations (45◦, 180◦ and 360◦

panoramic FOVs) for collaborative room redecoration tasks involving local and
remote users. They found that users exploiting the wide-angle and panoramic
FOVs performed better in terms of time needed to complete the task and number
of collisions compared to users working with the narrow FOV, even though they
perceived the panoramic FOV as the more difficult to manage. Concerning the
interaction with local users, users who exploited a wider FOV perceived to be
less successful in the collaboration.

Based on the short review above, it can be observed that wide-angle FOVs
allow remote operators to be more effective in remote navigation tasks compared
to the limited FOVs generally exploited in robots on-board cameras. In partic-
ular, fisheye and wide-angle perspective cameras proved to be the most used
setups, even though they suffer from distortion and no close-up view issues,
respectively.

By taking into account advantages and drawbacks of the above solutions,
the different camera configurations that will be considered and compared in this
paper are a fixed camera with a narrow (45◦) FOV, a perspective camera with a
wide-angle (180◦) horizontal FOV endowed with pan-tilt capabilities, as well as a
fixed fisheye camera with a wide-angle (180◦) diagonal FOV and a no-distortion
central area.

3 Robotic Platform

This section briefly describes the robotic platform that has considered in this
study, named Virgil, by illustrating its hardware and software features.

Virgil is a wheeled mobile telepresence robot that was initially designed for
cultural heritage scenarios with the goal to allow museum visitors to experience
temporary inaccessible areas not included in the visit, e.g., because closed to the
public (Fig. 1).

It was devised to be operated remotely by the museum guide, who can show
to the visitors the real time video stream received by the robot’s camera on
portable devices like smartphones and tablets [7]. It mounts a pan-tilt camera
and a laser sensor that is capable to detect obstacles at a distance of up to 30 m
with a horizontal FOV of 270◦. It is about 120 cm tall and weighs approximately
14 Kg. It is equipped with a Li-Fe 12 V battery providing it with an autonomy
of approximately 4 h and a maximum velocity of 1 m/s.

It is equipped with two navigation modalities implementing two different
levels of autonomy, i.e. manual teleoperation and semi-autonomous navigation,
both integrating obstacle avoidance functionalities. Sliding autonomy is used in
teleoperation tasks for adjusting robot’s level of autonomy to match the users’
needs [17]. The control software provides it with local and global path planning
capabilities, which rely on a map of the environment created in a preliminary
exploration phase. Algorithms are executed on the Robot Operating System
(ROS)-based platform for cloud robotics created by TIM.
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Fig. 1. The Virgil robot in a museum installation.

With respect to the original setup, for the purpose of this study, the camera
on the robot’s head has been replaced by a tablet device on a pan-tilt support,
which makes it possible to display at the remote site the face of the operator,
thus enhancing the sense of presence.

4 Telepresence Interface

In this section, the telepresence interface considered in this study to both display
the different camera configurations and allows human users to teleoperate the
robot through the provided navigation modalities is presented.

As illustrated in Fig. 2, it consists of a web-based application with a wide
central region occupied by a video window, in which the live stream received from
the robot’s camera is displayed (a smaller window shows the video captured by
a local webcam, which is displayed on the remote tablet mounted on the robot).
Right below the video window, there is a colored bar, which is used to visualize
the robot’s distance from possible obstacles. The bar is split in three regions,
which refer to obstacles in front, to the left and the right of the robot. Bar’s color
changes from green to red based on the actual measurements of the laser sensor.
A map showing position and orientation of the robot in real time is also included
on the left side of the interface. Robot is represented by a yellow triangle.

In Fig. 2 the interface is showing 3D content generated by the simulation
environment, though it can be seamlessly used to control the real robot.

5 Setups

In the following, the different setups considered in this work in terms of camera
configurations and navigation modalities (keyboard and point-and-click) will be
introduced, by providing also some implementation details.
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Fig. 2. Telepresence interface. (Color figure online)

Fig. 3. Narrow FOV (NFOV) configuration.

5.1 Camera Configurations

This section describes the three camera configurations that have been studied,
which differ in the size of the FOV and the way the user can control the position
and orientation of the camera mounted on top of the robot.

In the first configuration, later referred to as Narrow FOV (NFOV ), the
robot was equipped with a forward-facing camera characterized by a common
45◦ FOV, as illustrated in Fig. 3.

In the second configuration, a wide-angle perspective camera with a 180◦

horizontal FOV and pan-tilt capabilities (later abbreviated as WFOV&PT ) was
employed, as shown in Fig. 4. The pan-tilt was introduced in order to overcome
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the limitation experienced in [1,25], which was due to the fact that users were
not able to move the camera to see close obstacles on the floor in the perspective
view. The user can issue horizontal or vertical orientation sliding commands by
holding down the left button of the mouse to hook the current view and drag
it to the desired position (e.g. dragging the view allows the user to look to the
right, like in Google Street View1).

Fig. 4. Wide FOV plus pan-tilt (WFOV&PT) configuration.

Fig. 5. Fisheye FOV (FFOV) configuration.

In the third configuration, a wide-angle fisheye camera with a 180◦ diagonal
FOV (abbreviated as FFOV ) was exploited, as illustrated in Fig. 5. Since fish-
eye lens suffer from radially symmetric distortions, a radially symmetric image
1 https://www.google.com/streetview/.

https://www.google.com/streetview/


The Impact of Field of View on Robotic Telepresence Navigation Tasks 73

remapping phase was implemented in order to obtain an undistorted (perspec-
tively correct) circular region in the center of the view. As the intrinsic parame-
ters of the camera, as well as its distortion vector, were known, the pixels in the
circular area with a given radius could be undistorted, rectified and remapped
on the image in order to generate a perspectively correct view inside the circle
with the same radius. These steps (excluding the remapping) were also exploited
in the point-and-click video navigation modality (described later).

All the cameras transmitted a video stream at approximately 30 frames per
second with a resolution of 1024× 768 pixels.

5.2 Navigation Modalities

This section describes the approach to robot’s teleoperation that has been consid-
ered in this study, based on [1], which combines two different navigation modal-
ities, i.e., keyboard teleoperation and point-and-click video navigation, in order
to allow human operators to switch between them when needed [1]. The two
modalities have been integrated in the web-based application implementing the
user interface, which communicates with the robot and the cloud robotics plat-
form that hosts the navigation algorithms (to this purpose, roslibjs was used,
a JavaScript-based library for using ROS on the Web [24]). It is worth recalling
that navigation algorithms actually work on a map that was created by using
the robot’s laser sensor and applying a Simultaneous Localization and Mapping
(SLAM) strategy.

In the keyboard teleoperation navigation modality, the operator manually
drives the robot throughout the environment by means of directions keys. When
the up or down arrow keys are pressed, a ROS linear speed command is sent
by making the robot move forward or backward. Similarly, the left and right
keys twist the robot by changing its angular velocity. When pressed together,
the above keys can be used to make the robot move in the given direction while
turning left or right. Augmented reality arrows are displayed on the video stream
to provide human operators with a feedback about the command issued and
the current robot’s direction (Fig. 2). The robot exploits a local path planning
algorithm to navigate the environment.

In the point-and-click video navigation modality, the operator issues navi-
gation commands to the robot by clicking on the video stream received by the
camera to specify a target destination, as illustrated in Fig. 6. As said, since the
intrinsic parameters of the camera and the pan-tilt configuration, when used,
are known, the coordinates of the pixel clicked by the operator can be converted
to a point on the map by using ray-tracing. In fact, for each (x, y) pixel clicked
in the image, a ray can be generated whose intersection with the floor plane at
z = 0 determines the position in the environment where the robot should move
to. The robot exploits a global path planning algorithm to reach the destination
in an autonomous way by avoiding both fixed and moving obstacles. The path
that is being followed by the robot and the clicked target are overlapped to the
video stream using augmented reality (Fig. 2).
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Fig. 6. Point-and-click video navigation (Source: [1], p. 50).

6 Experimental Results

In this section, the experiments that were carried out to assess the impact of
different camera configurations in remote navigation tasks will be presented.

Experiments involved 10 volunteers (8 males and 2 females) aged between
24 and 32 years (M = 26.60 SD = 2.32), who were recruited among university
students from Politecnico di Torino. Participants were told that they would have
to navigate within a simulated environment to reach the office of a person they
were looking for. This navigation task was specifically designed to be composed
by three different subtasks referred to as T1 - Reach the column, T2 - Reach
the room, and T3 - Enter/exit the room in order to test the suitability of the
various configurations in the possible scenarios the robot could be involved into
when used in an office environment. In particular, T1 was designed to assess the
three configurations when driving the robot to a destination that is outside the
camera’s FOV. T2 was meant to study a scenario in which obstacles are to be
avoided. Lastly, T3 was designed to study performance when driving the robot
in constrained spaces.

A brief training was delivered in order to instruct participants on the use of
the interface for teleoperating the robot with the navigation modalities discussed
in Sect. 5.2. Afterwards, participants were invited to perform the three subtasks
in sequence by using all the camera configurations. To compensate for possible
learning effects, configurations were selected using the Latin Square order.

At the beginning of the experiment, the robot is initially standing in the
open space of the office environment to ensure that the camera cannot frame
the location to be reached in the first subtask. Robot’s position is indicated
by the yellow triangle in the map, as illustrated in Fig. 7. Participants have to
teleoperate the robot in order to reach the location labeled T1 on the map. A
possible path that can be followed is shown by the blue line. In the second task,
participants have to drive the robot from location T1 to location T2, which is
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located in front of the room they were looking for. In this case, they need to
avoid the column. A possible path is shown in green on the map. Lastly, in the
third sub-task participants have to drive the robot to make it enter the intended
room, bring it close to a desk (indicated by label T3), and finally exit the room.
A possible path is drawn in red on the map.

Fig. 7. Map of the environment considered in the experiments: initial position of the
robot (yellow triangle), destinations to be reached in the subtasks and possible paths.
(Source: [1], p. 51). (Color figure online)

During the experiments, quantitative data about time required to complete
the subtasks and number of navigation commands (key presses and/or mouse
clicks) were recorded. After having tested a given camera configuration, par-
ticipants were asked to fill in a NASA Task Load Index (TLX) [19] and a
NASA Situation Awareness Rating Technique (SART) [6] questionnaire. These
questionnaires were exploited to both evaluate participants’ self-assessed mental
workload and situation awareness (as done in [9]).

The first questionnaire evaluated participant’s perceived mental strain on
a six-dimension scale regarding mental demand, physical demand, temporal
demand, performance, effort, and frustration. Each dimension was assigned a
score from 0 to 100. A global score was then calculated by using a weighting
mechanism to combine the six individual scores.

The second questionnaire evaluated the subjective situation awareness of
the participants on a seven-point scale concerning the demand of attentional
resources (complexity, variability, and instability of the situation), the supply
of attentional resources (division of attention, arousal, concentration, and spare
mental capacity), and the understanding of the situation (information quantity,
and information quality). Like for the first questionnaire, a global score was then
calculated according to [6].

At the end of the experience, each participant was also asked to fill in a
usability questionnaire split in three parts.
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The first part was created by considering the Usefulness, Satisfaction, and
Ease of use (USE) questionnaire [13]. USE requested participants to evaluate
the ease of use and the satisfaction of the experimented camera configurations
by expressing their agreement on a seven-point scale.

The second part was created by considering the Subjective Assessment of
Speech System Interfaces (SASSI) methodology [8] and adapting it to let partic-
ipants judge the user experience with the considered camera configurations. The
(adapted) SASSI questionnaire requested participants to evaluate statements
referring to six usability factors, i.e., System Response Accuracy (SRA), Like-
ability (LIKE), Cognitive Demand (CD), Annoyance (AN), Habitability (HAB)
and Speed (SPE) by expressing their agreement on a seven-point scale. For the
sake of consistency with other questions, scores for CD and AN were inverted
(thus, higher scores have to be interpreted as being more positive).

The third part asked participants to express their preferences by ranking,
for each subtask, the experience made with the three camera configurations by
providing their judgment both for the three individual subtasks as well as for
the task as a whole. Collected data were then analyzed using one-way repeated
ANOVA in order to detect any overall differences between the three configura-
tions (significance level of 0.05). Afterwards, a post-hoc analysis was performed
using two-tailed paired T-tests (significance level of 0.05) in order to highlight
exactly where these differences were actually occurring.

Results obtained in terms of completion time as well as number of interactions
required to complete the subtasks are reported in Fig. 8. It is immediately clear
that completion time for subtask T1 with the NFOV configuration was largely
higher than with the WFOV&PT and FFOV configurations (Fig. 8(a)). Statis-
tical significance validated by both ANOVA and post-hoc analysis confirmed a
significant difference between NFOV and FFOV. Results for subtask T2 were
not statistically significant. With respect to subtask T3, even though differences
between WFOV&PT and both NFOV and FFOV were considerable, they did
not reach significance. Average values for the number of interactions (Fig. 8(b))
showed that, for subtask T1 and T3, the NFOV configuration required a larger
number of interactions compared to both WFOV&PT and FFOV (this number
was much higher in the case of T1). Lower completion time and reduced number
of interactions for the WFOV&PT and FFOV configurations were obtained also
when summing up results obtained for the task as a whole.

Results obtained in terms of participants’ mental workload and perceived
situation awareness (Fig. 9) appear to describe an almost comparable situation.
In fact, participants judged the NFOV as the most cognitive demanding con-
figuration, followed by WFOV&PT and finally by FFOV. Furthermore, partici-
pants judged the WIDE&PT as the configuration providing the highest situation
awareness. Therefore, it can be concluded that NFOV was perceived as the most
challenging configuration, as it worsened participants’ awareness of the operating
conditions.

Similar considerations can be made for all the usability factors tackled by
the USE and (adapted) SASSI questionnaires. In fact, as shown in Fig. 10, the
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Fig. 8. Results in terms of (a) completion time and (b) number of interactions required
to complete the three subtasks with each camera configuration. Bar heights report
average values (lower is better).

Fig. 9. Results concerning (a) mental workload and (b) situation awareness measure-
ments for the three camera configurations. Bar heights report TLX score (lower is
better) and SART score (higher is better).

configurations leveraging a wider FOV (WFOV&PT and FFOV) were judged
as the more usable, as they performed better for every usability factor. This
evidence was also confirmed by ANOVA, as for all the categories statistically
significant differences were found. Moreover, it can be observed that the per-
ceived speed (SPE) category was characterized by higher scores for wider FOVs,
thus confirming findings obtained in [3] (where it is stated that with wider FOVs,
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Fig. 10. Results concerning the usability of the three camera configurations for the
task as a whole based on (a) adapted SASSI and (b) USE questionnaires. Bar heights
report average values (higher is better).

navigation speed tends to be perceived as increased because of the scene com-
pression). It is worth noting also that the cognitive demand (CD) category con-
firmed results obtained by the NASA-TLX methodology for the mental workload
assessment.

Results regarding participants’ preferences in using the three camera config-
urations to perform the individual subtasks as well as the task as a whole are
reported in Fig. 11. Considering overall rankings, it appears that the favorite con-
figurations are the FFOV and WFOV&PT. This result is also valid for subtask
T1. Considering the other two subtasks, the FFOV configuration was strongly
preferred compared to WFOV&PT and NFOV.

Based on the feedback gathered during the experiments, preferences appeared
to be mainly motivated by the fact that, as expected, wider FOVs allowed partic-
ipants to see larger portions of the environment in which the robot was located.
This finding can be observed also within results discussed above. In fact, by
combining these results with completion times and number of interactions, it is
evident that the two configurations with the wider FOVs allowed users to com-
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Fig. 11. Number of times the three camera configurations were ranked 1st, 2nd and
3rd for the execution of the task as a whole (overall) and for the execution of individual
subtasks.

plete the subtasks in less time by issuing fewer commands. In particular, it can
be observed that the FFOV configuration was largely preferred in the execution
of subtask T2. This result was reasonably due to the fact that, when obstacles
were to be avoided, the wider FOV made it more suited to operate with the
semi-autonomous point-and-click video navigation modality, since participants
could see more easily the point to click where they wanted to move the robot
to. This observation is also confirmed by results concerning mental workload.
In fact, the FFOV appeared to be the less cognitive demanding configuration
compared to the other ones. It is also worth observing that this result may be
also due to the presence of the pan-tilt function of the camera in the WFOV&PT
configuration, since the number of commands that participants had to issue for
moving the camera was larger than with the FFOV configuration. Concerning
the awareness of the robot’s surrounding environment, the WFOV&PT configu-
ration was evaluated as the most effective. This result was reasonably due to the
fact that the pan-tilt capability of the camera allowed users to better explore
the environment without necessarily having to move the robot. Lastly, the radial
distortions in the FFOV configuration were judged by participants as altering
the perception of the environment on the robot’s sides.

7 Conclusions and Future Work

In this paper, a user study was conducted to assess the impact on user experience
of different camera configurations (in terms of FOV size and pan-tilt availabil-
ity) in remote robots navigation tasks, both considering objective and subjec-
tive factors. Experimental results in terms of objective observations showed that
camera configurations characterized by wider FOVs are more effective, as they
allow users to carry out tasks in less time and with fewer navigation commands.
Similarly, results obtained through subjective observations suggested that the
FFOV was the less cognitive demanding configuration compared to WFOV&PT
and NFOV. The WFOV&PT configuration was judged by the users as the con-
figuration providing the highest situation awareness. Based on the preferences
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expressed after the experiments, this evidence was mainly motivated by the fact
the FFOV configuration allowed users to spot a larger portion of the robot’s sur-
roundings by making it easier for them to exploit the semi-autonomous point-
and-click video navigation modality. The WFOV&PT configuration was pre-
ferred because of the pan-tilt capability, which allowed users to better explore
the scene without necessarily having to move the robot.

Future works will be aimed to explore the effect of dynamically combining the
two wide-angle FOV configurations, by letting the users switch between them
depending on the situation, thus benefiting from the advantages offered by both
of them.
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Abstract. In motion science, biology and robotics animal movement
analyses are used for the detailed understanding of the human bipedal
locomotion. For this investigations an immense amount of recorded
image data has to be evaluated by biological experts. During this time-
consuming evaluation single anatomical landmarks, for example bone
ends, have to be located and annotated in each image. In this paper
we show a reduction of this effort by automating the annotation with a
minimum level of user interaction. Recent approaches, based on Active
Appearance Models, are improved by priors based on anatomical knowl-
edge and an online tracking method, requiring only a single labeled
frame. In contrast, we propose a one-shot learned tracking-by-detection
prior which overcomes the shortcomings of template drifts without
increasing the number of training data. We evaluate our approach based
on a variety of real-world X-ray locomotion datasets and show that our
method outperforms recent state-of-the-art concepts for the task at hand.

Keywords: One-shot learned detector · X-ray videography ·
Graph-based landmark tracking · Animal locomotion analysis ·
Active appearance models

1 Introduction

The profound investigation of animal locomotion plays an important role in many
fields of research, e.g., zoology, biomechanics, and robotics. For those analyses
an immense amount of data has to be recorded to be able to derive a model or to
refine existing ones. In this context, it is necessary to evaluate the collected data
in detail, which requires considerable expenses by biological experts in terms
of manually annotating every single measure [1,2]. Therefore, an automation of
this task is highly preferable.

Reflective marker-based systems can be used to capture poses of single
recorded frames [3]. However, since the animals locomotor system can be hidden
by feathers or fur, the analysis of the inner skeleton is ideally more useful. In
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(a) C-arm X-ray acquisition system (b) Acquisition setup

Fig. 1. The animals are recorded by a C-arm X-ray acquisition system while running
through a treadmill.

order to analyze the skeletal locomotor system in vivo, high-speed X-ray acqui-
sition is applied to obtain a detailed understanding of bone movements which
are unseen using a standard RGB camera.

In an usual experimental setup, animals are placed on a treadmill which is
enclosed by a C-arm X-ray acquisition system with two perpendicular detec-
tors providing a top view (dorsoventral view) as well as a side view (lateral
view) image of the entire locomotor system. To allow for a detailed biological
evaluation, acquisition is performed at a high spatial and temporal resolution
(1536 × 1024 pixels at 1000 FPS) on average for 1–2 s, resulting in up to 2000
frames. In Fig. 1 the experimental setup and the C-arm X-ray acquisition system
is shown. In order to avoid the time-consuming task of manual annotation of sin-
gle images [4], an automation of this task at a minimum level of user interaction
is of great interest.

Haase and Denzler [5] applied Active Appearance Models (AAM) [6] to sev-
eral bipedal bird locomotion datasets. One crucial conclusion of this work is that
AAMs need substantial constraints from various sources to handle self-occluded
anatomical landmark subsets. With the support of additional anatomical knowl-
edge, i.e. body part segmentation, multi-view acquisition, and a local landmark
tracking approach, for the animals lower limb system, the resulting Augmented
AAM [5] provides robust results for the majority of the processed datasets.
However, the applied online local tracking approach [7] suffers from a potential
template drift caused by severe and even full occlusion of the tracked objects.

Motivated by this shortcoming, we propose in a more detailed elaboration
our one-shot learned tracking-by-detection approach [8] which can handle these
limitations by a global search. With one representative example of an anno-
tated landmark subset a detector is learned. A two-staged graph-based tracking
approach then provides motion trajectories through the whole sequence. Those
trajectories are utilized as a prior in the Augmented Active Appearance Model
framework together with priors from other sources as illustrated in Fig. 2. In our
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Fig. 2. Based on few annotated biplanar recorded training images an Augmented AAM
[5] is trained, consisting of anatomical knowledge, a full multi-view AAM model, an
AAM model of the torso landmark subset, epipolar constraints and a local tracking-
by-detection prior introduced in [8].

experiments we show that this extension is able to improve previous results by
up to 120 pixels in precision.

The remainder of the paper is structured as follows. In Sect. 2 we will give
a brief overview of related work, followed by a short introduction to Active
Appearance Models in Sect. 3 and its augmentation in Sect. 4. Afterwards, our
one-shot learned tracking-by-detection approach will be introduced in Sect. 5. An
evaluation of the detection and tracking results is presented in Sect. 6. Finally,
Sect. 7 concludes the paper with a short discussion.

2 Related Work and Motivation

For anatomical landmark tracking Haase et al. [9] applied Active Appearance
Models [6] to X-ray locomotion scenarios. They showed that this generative
model is well suited for the task at hand since training requires only a small
amount of low contrast images. However, this approach has its weaknesses for
a certain subset of landmarks–primarily landmarks of the lower limb system–
undergo severe occlusions. They extended their approach in [10] to multi-view
AAMs [11], which is more robust and accurate for torso landmark subsets com-
pared to the single view approach. By concatenating corresponding landmarks
of the second view the model became more general. The usage of additional
constraints, especially for the distal limb landmarks, supporting the multi-view
AAM, leads to a holistic model, referred to as Augmented AAM [5]. Anatom-
ical knowledge, the multi-view information formulated as epipolar geometry,
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and a local tracking approach were used as priors for augmenting the standard
AAM. Subtemplate Matching (STM) [7] as a data-driven online tracking app-
roach localizes landmarks of the distal limb segments. Based on the small number
of available training images, STM only needs one initial labeled frame for robust
tracking, which renders the method highly preferable for the underlying task.
However, online tracking fails in the case of severe occlusions and temporal dis-
appearance of tracked objects. For example, subsequences with long-term occlu-
sions of similar crossing objects considerably affects the tracking performance.
As a consequence the template drift occurs, which results in a total loss of the
structure to be tracked. Sequences with temporal disappearance of the object
of interest produces a similar effect. An extension of STM is a pictorial struc-
ture approach [12], where the distal limb system is formulated by a kinematic
chain of single bones. Unfortunately, the extended method has the same weak-
nesses as STM. In contrast, our one-shot learned tracking-by-detection approach
will tackle the template drift problem and handles strong texture shifts using
a robust offline graph-based tracker even when the patch detection is missed in
single frames.

Offline tracking algorithms are used to track objects in sequences [13,14]
and they are often formulated as a graph theoretical problem [15–18]. First and
foremost, reliable object detections serve as basis for all tracking approaches.
Many object detection methods are based on local image features like HOG
[19,20] or SIFT [21] to detect objects in every single frame. In order to localize
an object of interest a Support Vector Machine (SVM) or Decision Trees [22]
are used for classifying positive and negative image patches in a sliding window
manner [20]. However, SVM training is computationally expensive–especially
when applying hard negative mining–and need a huge amount of training data.

Based on the fact that the amount of training data in our application sce-
nario is limited, we use Whitened HOG features and an LDA model [23] for
detecting landmark subsets, which only needs one single positive example for
robust detector training.

More recently, Coarse-to-fine Convolutional Network Cascades [24,25] are
designed in a multi-level architecture for facial landmark detection. By fusing
the outputs of each level of the multiple networks a robust and accurate estima-
tion is possible. However, the Convolutional Neural Network frameworks have a
complex structure and need a lot of data for training which is contrary to our
pre-condition of a very limited number of training data.

The main contribution of this paper is a one-shot learned tracking-by-
detection approach using a linear detector utilizing Histogram of Oriented Gradi-
ents (HOG) features and a classifier based on the Linear Discriminant Analysis
in a sliding-window manner to detect the landmark subset of the lower limb sys-
tem. The detection method provides two important advantages. On the one hand,
many detector models for a sequence can be trained in a very short time and
on the other hand the model training requires only one representative positive
example which is important for the desired small annotation effort. Addition-
ally, we use smart convolutions to speed up sliding window manner detections.
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Subsequently, a two-staged graph-based tracking algorithm is used to determine
landmark subset trajectories through the whole sequence. In contrast to STM
tracking [7], template drifts are reduced or even eliminated since landmark tra-
jectories are optimized globally. The single landmark tracks of the lower limb
system serve as important prior knowledge for the fitting task of an probabilistic
Augmented AAM model, trained with only 10 annotated examples.

3 Active Appearance Models

An AAM is a parametric statistical generative model proposed in [26] consisting
of a shape component and a shape-free texture component. The interrelation-
ship of shape and texture is used to model visual appearance of different object
classes. Object classes, e.g. anatomical structures, represented by a set of land-
marks and a spanned texture within these landmarks can be modeled by a AAM.
Training data consists of N images I1, ..., IN with corresponding landmark anno-
tations l1, ..., lN for relevant anatomical structures.

Shape Model

The shape model can be described as the variability of the given landmark
coordinates l1, ..., lN with ln = (xn,1, yn,1, ..., xn,L, yn,L)T ∈ R

2L of the training
data. After aligning the N landmark sets via Procrustes Analysis [27] to shapes
s1, ..., sn, the variation of the aligned shapes is parameterized by applying Prin-
ciple Component Analysis PCA to the shape matrix S = (s1 − s, ..., sN − s)
where s represents the mean shape with:

s =
1
N

N∑

n=1

sn. (1)

A shape s can be expressed as a linear shape model with K ≤ rank(S) orthonor-
mal shape eigenvectors Ps, a K-dimensional vector of shape parameters bs and
the mean shape s is given by:

s ≈ s + Psbs, with bs = P T
s (s − s). (2)

The number of K shape eigenvectors is typically chosen between 95% and 98%
[28] of the variance of the shapes S.

Texture Model

The texture model of the AAM build the sub-model describing the variation
of the shape-free textures of our object class. To guarantee the shape-freeness,
each image texture I1, ..., IN is warped from its landmark configuration ln into
the mean shape s. First Delaunay Triangulation [29] is used to triangulating
the reference shape. Afterwards, a piecewise affine warp based on the landmark
triangulation approximates the global warping. The warping process is described
in more detail in [30].
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To obtain the linear texture model g the very same PCA-based procedure
is applied to the mean-centered shape-normalized image vectors of G = (g1 −
g, ..., gN − g) ∈ R

M×N :

g ≈ g + Pgbg with bg = P T
g (g − g) (3)

with the texture parameters bg, the texture eigenvectors Pg and the mean texture
g with

g =
1
N

N∑

n=1

gn. (4)

As before, the number of covered texture eigenvectors is related to a certain
amount of texture variance.

Combined Model

The shape model and the texture model are two independently estimated sub-
models of an independent AAM [30] which can represent a valid object instance.
To avoid invalid combinations of shape and texture parameters the combined
AAM restricts the shape and texture parameter combination to the domains
of the training images. By concatenating the variance-normalized shape and
texture parameter vectors and applying PCA again, we obtain:

c ≈ Pcbc with bc = P T
c c, (5)

where bc are the combined parameters and Pc are the combined eigenvectors.
Every mean-free cn of C = (c1, ..., cN ) ∈ R

(K×K′)×N is denoted like in [6] with:

cn =
(

bs

w · bg

)
. (6)

The weighting factor w is used to balance the individual influence of shape and
texture model. After applying PCA, again, the number of covered combined
eigenvectors is related to a certain amount of variance.

Model Fitting

After training, the AAM model can be used to find a best fitting for the model
parameter vector b̂c to a given input image by minimizing the squared distance
δg = (gimage − gmodel) of the given image and the model appearance:

b̂c = argmin
bc

δg�δg, (7)

where we make use of a assumed linear relationship [6,26]

δbc = Aδg. (8)
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4 Augmented Active Appearance Models

Augmented AAMs (AAAMs) proposed in [5] extend the fitting process of stan-
dard AAMs by providing additional prior knowledge. However, the accuracy of
standard AAMs is prone to occlusions and unseen cases due to the linear shape
and texture modeling. To overcome these limitations prior knowledge from dif-
ferent sources can be incorporated. In addition to multi-view information [10],
the authors of [5] use various types of constraints to augment the standard AAM.
Constraints like subset AAM, anatomical knowledge, epipolar geometry and a
local tracking method [7] for the animals lower limb system are used to increase
the fitting performance and overcome the typical AAM weakness based on linear
shape and texture modeling. We implement the idea of a combined approach by
reformulating the AAM fitting as a maximum a-posteriori (MAP) framework as
in [5] with a conditional independent input image I and every provided fitting
constraints π:

b̂c,MAP = argmax
bc

p(bc|I,π)

= argmax
bc

p(I|bc) · p(π|bc) · p(bc).
(9)

For input image data I it is sufficient to use only a cropped version gimage,
defined by the AAM shape configuration. The likelihood can than be mod-
eled as a Gaussian distribution gimage|bc ∼ N (gmodel, Σgimage−gmodel

) where
Σgimage−gmodel

will be estimated in AAM training. The prior term p(π|bc) per-
forms the integration of all the constraints π into the AAM fitting process,
where π represents the differences between the given target constraint values
and the values based on the AAM parameters bc. Again a Gaussian distribution
π|bc ∼ N (0, Σπ) will be assumed. The term p(bc) can be modeled as maximum
likelihood estimation using a uniform distribution. For more information about
the prior modeling of Augmented AAMs please refer [5].

A serious weakness of standard AAM is tracking landmarks of the lower limbs
of the animal locomotor system. To overcome this drawback, a local tracking
constraint πlocal with the results of an online tracking approach [7], localizing
those critical landmarks, is included in Augmented AAM framework.

5 One-Shot Learned Tracking Approach

For a reliable data-driven tracking of landmarks of lower limb landmarks, ini-
tially, a sophisticated detector is of great importance. As detection of single
landmarks is more complicated, a detection of landmark subset patches is of
advantage. The landmarks of single bones can be described as such a subset.

In the following sections we introduce a one-shot learned tracking-by-
detection approach. In Sect. 5.1 the bone detection method will be discussed,
while Sect. 5.2 focuses on bone tracking and landmark retrieval.
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5.1 One-Shot Learned Detector

To distinguish positive and negative examples, the combination of HOG features
and SVM classification was the most commonly used approach in the past decade
[19,20]. Unfortunately, SVM training and testing is computationally expensive,
especially when applying hard negative mining with a huge amount of training
data.

To overcome this limitation, Hariharan et al. introduces in [23] an object
detection approach based on augmented HOG features [20] and a classifier based
on linear discriminant analysis (LDA).

Their model relies on the assumption that the distributions of object
instances (positives) and background examples (negatives) follow both a Gaus-
sian distribution. Thereby, the major computational effort is caused by the esti-
mation of the background statistics (corresponding to the negative samples).
Estimating the covariance matrix Σ0 and the mean vector μ0 has to be done
only ones.

For every positive class only the respective mean vector μ1 has to be com-
puted to obtain a discriminative linear separation of the two classes

ωLDA = Σ−1
0 (μ1 − μ0). (10)

A sliding window-based method and template matching is used to compute sim-
ilarity scores of a feature vector x by a linear Whitened Histograms of Orien-
tations (WHO) detector f(x) = 〈ωLDA,x〉. Dense sampling of these features
allows for matching the image templates.

To speed up the evaluation the authors of [31] changed the order of computa-
tions and reformulated the sampling task as efficient convolutions. The entire set
of window patches with DC feature dimensions in the dense tiled grid of T × T
cells are evaluated by adding D convolutions of 1 × 1 filters with corresponding
feature planes. Consequently, derived from D = T ·T ·DC , we obtain the feature
extraction as efficient convolutions.

The responding normalized similarity scores of every window matching is
used as the detection score of a detection hypothesis. Unfortunately, the objects
of interest in our application are rotated within a certain range. Accordingly,
in the detection process, the input image needs to be rotated. As a result,
the detection result at a specific location in the image contains a lot of mul-
tiple detections of the same object depending on the used angular resolution.
Each detection hypothesis contains position information, a detection angle and
a detection score.

For the tracking algorithm the detection results are filtered to obtain more
robust object hypotheses. First, the normalized detection maps It of every frame
t are smoothed by accumulating Gaussian filter kernels G(x, y, σ) weighted by
the corresponding detection score resulting in a smoothed detection map Ot with

Ot(i, j) =

m
2∑

x=−m
2

n
2∑

y=−n
2

It(i + x, j + y)G(x, y, σ), (11)
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where m = n describe the filter size of G(x, y, σ). In order to extract single
detection hypotheses with new detection positions, Non-Maximum Suppression
is applied to Ot. Based on the assumption that the highest detection score
yields the highest similarity with the model, the related detection score and
rotation angle result from the rotation angle with the highest detection score
within a local neighborhood defined by half the object size around the detection
hypotheses is selected. Finally, the detection scores of all frames have to be
normalized again.

5.2 Graph-Based Tracking

To associate the detection results of Sect. 5.1 to whole object trajectories, a
reliable tracking algorithm is necessary. The graph-based tracking approach
inspired by [17] uses the detection results of Sect. 5.1 and is divided into two
steps. In the first stage (tracklet extraction), the algorithm extracts segments
of robust object sub-trajectories by searching similar detected objects of subse-
quent frames. Afterwards, in second stage (tracklet linking), the extracted sub-
trajectories are linked to full object trajectories.

Tracklet Extraction. A Directed Acyclic Graph (DAG) G is formulated where
every detection hypothesis represents a node. We define detection hypotheses
H = {H0, ..., HT } with Ht = {ht,0, ...,ht,Kt

} where ht,i represents the ith

detection hypothesis of frame t. Furthermore, we add a virtual source hsource

and a sink node hsink to G = (H,E,d),E ⊆ H ×H, which are fully connected
to all other nodes ht,i. The edge weights of the DAG depend on the number of
detection feature weights dp, as for example spatial ds, temporal dt and angular
distances da, but also detection scores or other detection results of adjacent
detection hypotheses. These detection feature weights we call detection priors.
In Fig. 3 the tracklet extraction graph G is illustrated.

Fig. 3. Sub-trajectories of objects are extracted by formulating the detection hypothe-
ses as a directed acylic graph with edge weights influenced by constrained detection
information like spatial, temporal and angular distances between object hypotheses.
Applying iteratively a shortest path algorithm extracts robust object sub-trajectories.
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However, the non-negative edge cost function d : H × H with P detection
features is calculated unlike [17] as follows:

d(ht,i,ht+Δt,j) =
P∑

p=0

αp · dp(ht,i,ht+Δt,j)

r.t. Δt > 0.

(12)

The inner weight parameters αp of the single tracking priors with
∑P

p=0 αp = 1
regularizes the influence of individual priors. Finding an optimal set of weights
automatically is subject of future research. The edge weights between the virtual
nodes, hsource and hsink, result from the temporal distance to the respective
node. Before using a shortest path algorithm like Dijkstra [32] or Bellman-Ford
[33], thresholds, θmin and θmax, based on the used tracking priors have to be
defined, such that: θmin ≤ dp ≤ θmax. The thresholding sets constraints for the
first stage and set edges which do not match the pre-condition to infinity.

Therefore, this constraints guarantee reliable path segments of related detec-
tion hypothesis of the same object and prevents mistakenly created shortest
paths through the whole graph. In the DAG the edge weights of extracted paths
are subsequently set to infinity to avoid multiple extraction of identical tracklets.
The tracklet extraction process stops, if no further tracklet can be found, i.e.,
the tracklet length is smaller than 2.

Tracklet Linking. Afterwards, the extracted tracklets are linked again to whole
object trajectories within a second DAG G′ = (H ′,E′, d′), E′ ⊆ H ′ ×H, where
H ′ = {τ0, ..., τK′} are the estimated tracklet hypothesis and d′ :⊆ H ′ × H ′ a
non-negative cost function. In Fig. 4 the tracklet linking graph is illustrated. The
weight d′(τi, τj) between the two tracklets τi and τj is influenced by the spatial
and temporal information of the boundary detection hypotheses of the tracklets.
Edges between two tracklet nodes become non-infinity when τi ends before τj

starts, more formal:

d′(τi, τj) =

{
d′

spatial(τi, τj) + d′
temporal(τi, τj) tmax(τi) < tmin(τj)

∞ tmax(τi) ≥ tmin(τj),
(13)

where d′
temporal(τi, τj) and d′

spatial(τi, τj) is calculated like in d as the temporal
and Euclidean distance. Since the single objects in tracklets can have different
velocities, this information also can be used in d′.

6 Experiments

In this section we evaluate the performance of the Augmented AAM framework
extended by the introduced landmark detection and tracking techniques. We con-
duct our experiments on five avian locomotion datasets of several bird species
with focus on sequences showing long-term object occlusion. The datasets were
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Fig. 4. Another directed acyclic graph is formulated by the extracted tracklets. Apply-
ing again a shortest path algorithm extracts full object trajectories.

Table 1. An overview of analyzed datasets [8].

Name Species Frames Labeled frames

Q1 Quail 706 22

Q2 Quail 701 15

T1 Tinamou 776 37

J1 Jackdaw 1201 46

J2 Jackdaw 1051 36

recorded by a high-speed X-ray acquisition system at 1000 Hz with a resolution
of 1536× 1024 pixels. Table 1 summarizes the analyzed datasets. In Sect. 6.1
we compare different detection methods applied to two selected datasets with
considerable self occlusions. Afterwards, results of the graph-based tracking algo-
rithm are shown in Sect. 6.2 which uses the detections retrieved as described in
Sect. 6.1. Finally, we use the tracking results in Sect. 6.3 as powerful priors for
the Augmented AAM framework.

6.1 Comparison of the Detector Models

In general, detector models are learned from positive object examples. The num-
ber and quality of these examples is a crucial factor for their accuracy. However,
in our application the number of annotated frames should be as much as neces-
sary, but as few as possible. Another challenge for learning a reliable detector in
our application is the visual appearance of the input images. X-ray acquisition
systems provide grayscale images of low contrast. Accordingly, the detector has
to overcome issues with respect to appearance and amount of positive train-
ing examples. Learned detector models using patches around landmarks are not
representative enough concerning the high intra-class variability. Figure 5 should
illustrate this intra-class variability with the help of visualized HOG features.
Instead of using such landmark patches, the usage of subsets of landmarks is
highly preferable to obtain a representative robust detector model based on
examples with a low intra-class variability. Hence, the usage of corresponding
landmarks of the lower limb bones (proximal and distal landmarks) are used in
our application to define subsets and new patches for our detector. This is done
by creating rotation normalized bounding boxes around the landmark subset.
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Fig. 5. Image patches of the proximal Tarsometatarsus landmark (above ) and cor-
responding bone (below) with visualized HOG features from different time steps of a
sequence.

Figure 6 confirms our assumption that using landmark subset patches instead of
patches around single landmarks for learning a detector model provides much
better detection performance. In our experiments we applied four different detec-
tor methods to the mentioned landmark subsets: HOG features trained with a
linear SVM using all positive examples, a WHO model trained with all posi-
tive examples and as well as a HOG-SVM and a WHO model trained with only
one-shot, in other words, one single example (one-shot learning).

HOG. The feature extraction is based on [19] with a gradient quantization to 9
orientation bins, a cell size of 8× 8 pixels, a block size of 4× 4 cells, and a block
spacing stride of 8 pixels. A linear SVM model is trained using all annotated
frames (positive bone examples) in the training data. Another SVM model is
trained with only one representative example of the training data. To generate
negative examples, window patches were clipped around the positive example
patches. During detection the image is rotated between −90◦ and +90◦ with
respect to biological constraints of the bone landmark subsets. For every rota-
tion the detector obtains object hypotheses with information regarding position,
detection score, and rotation angle using a sliding window technique. The chosen
rotational resolution depends on the patch size. We used a degree step of 1.

WHO. For the WHO model ωLDA the background statistics has to be com-
puted first. Therefore, N0 randomly unlabeled image patches were selected from
the sequence and the mean μ0 is estimated by computing the mean HOG fea-
ture μ0 = 1

N0

∑N0
i=0 E[xi]. The covariance Σ0 is estimated using the spatial

autocorrelation function [23]. With the assumption of independent and identi-
cally Gaussian distributed positive and negative examples the model training
can be performed using only one positive example. Since the LDA model ωLDA

is not rotational invariant, the sliding window technique has to be performed for
multiple image rotations, as well. In a further experiment we compare the detec-
tion methods for all datasets of Table 1. We compared HOG-SVM models with
WHO models. Both are trained with all positive landmark and bone examples.
Afterwards, models with only one representative example were trained. Since
the detection method of Sect. 5.1 applied to landmark patches yields countless
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Fig. 6. Detector models were trained for landmark subsets patches (bones) and the
single landmark patches of the lower limb landmarks of all datasets of Table 1 [8].
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Fig. 7. The Precision-Recall (PR) curve illustrates the performance comparison of the
applied detection methods to all datasets of Table 1, respectively [8].

numbers of false positives and missed detections, we use for further experiments
only those detection results based on the bone patches. Figure 7 illustrates the
comparison of the presented detection methods, which exhibit different detection
performances. Both models using WHO features clearly outperform the results
using HOG features, because the estimated background statistics Σ0 has a large
influence on the linear separation. Regarding the whitening of the WHO features
the performance of trained WHO models are nearly equivalent, regardless of the
number of training samples. The poor performance of the model trained with
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Fig. 8. The detection result for the Q2-dataset from Sect. 6.1 were applied to the two-
staged graph-based tracker and compared to the STM approach of [7]. The landmark
error observed over time visualizes the drawback of the STM for cases of occlusion and
temporal disappearance [8].

one HOG feature example is caused by the weak representation of the class, as
a linear separation is nearly impossible. Because of its very poor performance,
the one-shot learned HOG-SVM model is ignored for the following experiments.

6.2 Online vs. Offline Tracking

In this section the graph-based tracking algorithm described in Sect. 5.2 is
applied to the detection hypotheses of Sect. 6.1. Every detection provides a posi-
tion information, a detection angle, a detection frame number, and a detection
score. Based on this information the weights of the DAG G are calculated as
described in Sect. 5.2, where ds represents the spatial distance, da the angular
distance, dt the temporal distance and dc the inverted summarized detection
scores between two nodes. After normalizing all weights dp we choose uniform
inner weights αp for the edge cost function d. Additionally, in the second stage
(tracklet linking), the mean velocity is calculated using position information
of all detections covered by the respective tracklets. Based on the anatomical
knowledge, especially the length of the extracted bone examples described in
Sect. 6.1 and the detection angle information, it is possible to recover the prox-
imal and distal landmark positions. Figure 8 illustrates the comparison of the
STM baseline with our tracking results applied to the Q2-dataset. For all remain-
ing datasets the Euclidean tracking error plots show similar results. The graph
of the Euclidean tracking error clearly shows the template drift of the STM
algorithm at time step 190 after the initial position at time step 167 where the
pixel error was close to 0 pixels. All other graphs show robust trajectories of the
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Fig. 9. Prior for the Augmented AAM: four different local tracking approaches were
analyzed with respect to Euclidean landmark errors of the proximal and distal Tar-
sometatatarsi landmarks of the lower limb system [8]. The Standard AAM and the
Augmented AAM utilizing the STM approach as local prior serve as baseline for the
comparison to our approach (see Sect. 6.2).

introduced detection methods with an error of only 10 pixel on average. The tra-
jectories based on the WHO one-shot detector model achieves the nearly same
performance like the detectors trained with all positive examples while only one
single training example was used.

6.3 A One-Shot Learned Prior for AAAMs

As an extension of the Augmented AAM framework [5], illustrated in Fig. 2, we
replaced the utilized local tracking prior πlocal [7] by our tracking-by-detection
approach from Sect. 6.2 which is able to recover lost templates based on global
optimization in contrast to [7]. The comparison is conducted for all datasets of
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Fig. 10. For the five datasets of Table 1 an averaged evaluation of the two different
views illustrates the Euclidean landmark error of three landmark groups (torso, upper
leg, lower leg) [8].

Table 1. First, a multi-view AAM model of all landmarks and the torso landmark
subset were trained with 10 annotated frames and is used as torso constraint.
Based on both available views (lateral and dorsoventral) the epipolar geometry
with the help of the Fundamental Matrix is estimated and is used as epipolar
constraints. Anatomical knowledge, in terms of biological distance constraints
were obtained via image segmentation as proposed in [5]. Together with one
of the mentioned tracking approaches as lower leg constraints the AAAM is
formulated as in Sect. 4. In our experiments we compared the influence of the
different tracking priors. Figure 9 illustrates the Euclidean landmark error of the
local tracking approaches of Sect. 6.2 applied to the Augmented AAM framework
of [5]. It can be clearly seen that the template drift problem of the Q2-dataset (see
Fig. 8) using the STM tracking approach substantially affects the performance
of the entire AAAM framework. In contrast, our proposed tracking prior allows
for highly accurate results of the combined AAAM approach without the loss of
individual landmark subsets. In Fig. 10 the average error over all sequences of
Table 1 is shown. It can clearly be seen that our presented tracking-by-detection
prior outperforms the online tracking approach even in the case of using only
one single example for training. A qualitative comparison can also be seen in
Tables 2 and 3.
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Table 2. Qualitative results of selected frames of the J2-dataset illustrate the tracked
landmarks by the augmented AAM using the STM tracking prior [7] and our one-shot
learned tracking-by-detection prior [8].

STM

WHO

frame 300 350 400 450 500

Table 3. Augmented AAM using the STM tracking approach [7] and our one-shot
learned tracking-by-detection method [8] as local tracking prior shows in comparison
to each other nearly the same accurate results applied to the T1-dataset.

STM

WHO

frame 225 265 285 305 385

7 Conclusions

In this paper we proposed a new tracking-by-detection method for anatomical
landmark retrieval in animal locomotion analysis. The main contribution is a
one-shot learned tracking-by-detection prior supporting an probabilistic Aug-
mented AAM framework. In particular, a linear detector was trained in a very
fast manner with only one representative positive example of a desired landmark
subset. Afterwards, a two-staged graph-based tracking algorithm generates in
two stages whole trajectories of the detected hypotheses and recovers the single
landmarks of the subset. Finally, the landmark tracking results are used as a
prior for an AAM to support the model-driven baseline algorithm and solve the
model fitting task for occluded and temporally disappeared landmark subsets. In
our experiments, we compared our approach to an online local tracking method
using a frame-by-frame template matching strategy which is very accurate in
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sequences with partial self occlusion, but fails in case of long-term full occlu-
sions. Additionally, we showed that this extension is able to improve previous
results by up to 120 pixels in precision. The tracking precision of the proposed
algorithm can reach further improvements, if a higher angular as well as spatial
resolution is used, which, however, also increases detection runtime.
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Research Foundation (DFG).
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Abstract. In this paper, we propose a line-based SLAM from an image
sequence captured by a camera mounted on a vehicle in consideration
with the prior distribution of line features that detected in an urban
environments. Since such scenes captured by the vehicle in urban envi-
rounments can be expected to include a lot of line segments detected from
road markings and buildings, we employ line segments as features for our
SLAM. We use additional prior regarding the line segments so that we
can improve the accuracy of the SLAM. We assume that the angle of
the vector of the line segments to the vehicle’s direction of travel con-
form to four-component Gaussian mixture distribution. We define a new
cost function considering the prior distribution and optimize the relative
camera pose, position, and the 3D line segments by bundle adjustment.
The prior distribution is also extended into 2D, the distance and angle of
the line segments. In addition, we make digital maps from the detected
line segments. Our method increases the accuracy of localization and
corrects tilted lines in the digital maps. We apply our method to both
the single-camera system and the multi-camera system for demonstrate
the accuracy improvement by the prior distribution of distance and angle
of line features.

Keywords: Line-based SLAM · Manhattan world assumption ·
Road markings · Gaussian distribution

1 Introduction

Currently, advanced driver assistance systems (ADAS) has been actively
researched. An autonomous car is an example of an ADAS that will enable peo-
ple to go anyplace without your driving operation. To achieve that, it requires
localization to calculate its’ trajectory. [12] indicated that the accuracy of the
localization required for practical use is from several dozen centimeters to sev-
eral meters. For localization, one of the main methods is to use GPS. Although
POSLV, one of the high-end integrated accurate positioning system, achieves
c© Springer Nature Switzerland AG 2019
A. P. Cláudio et al. (Eds.): VISIGRAPP 2017, CCIS 983, pp. 105–127, 2019.
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accuracy within several dozen centimeters using a RTK-GPS receiver, it is not
appropriate for use in the autonomous car. One reason is that the cost of RTK-
GPS is very high. Another reason is that the GPS system depends on the strength
of microwaves from the satellite. Thus, if the vehicle is in the tunnel, it cannot
work.

Meanwhile, the visual simultaneous localization and mapping system
(SLAM) has extensively been researched and improved for estimating positions
and poses for vehicle localization. In visual SLAM, feature points should be
detected and tracked from the environment around the vehicle using a camera
as an input. If a lot of feature points are detected, SLAM can provide accurate
camera positions and poses with 3D map of the target scene in a similar accu-
racy as a laser range scanner. Since the accuracy of SLAM decreases without
enough feature points, a lot of studies have been tried to improve the accuracy
for small amount of feature points; for example, studies that uses multi-cameras
or researches detect not only points, but also lines. However, using many feature
points or lines means an increasing of calculation cost, and it is fatal because the
system of the autonomous car requires a real-time calculation. Increasing equip-
ment means increasing of production costs. The less equipment attached to the
vehicle, the better it is as long as the accuracy is maintained in the autonomous
car.

In this paper, we propose a line-based SLAM considering a prior distribution
of line features in an urban environment, which implies the Manhattan world
assumption. Based on the fact that a lot of line segments in road markings are
parallel or vertical to a vehicle’s direction of travel, we define the prior distri-
bution as four-component Gaussian mixture distribution [13]. Then we define a
new cost function considering the prior distribution and optimize the relative
camera pose, position, and the 3D line segments by bundle adjustment. The
prior distribution is also extended into 2D, the distance and angle of the line
segments.

To prove our method’s effectiveness, we conduct four experiments: (1) single-
camera system with line-based SLAM, (2) multi-camera system with line-based
SLAM, (3) single-camera system with line-and-point-based SLAM, and (4)
multi-camera system with line-and-point-based SLAM. We can achieve a high
accuracy of SLAM in all experiments by our method.

In addition, we simultaneously make a digital map. Although, the digital
map has been used in ADAS, it must be accurate and up-to-date. Roads and
road markings are destroyed frequently, so they must be updated. Our digital
map can be generated while driving on streets, and it requires cameras. No other
equipment are needed. SLAM often has some intrinsic or extrinsic errors, so the
line segments in the map often tilt. However, it is not a problem in our method
because the directional distribution is considered.



Line-Based SLAM Considering Prior Distribution of Distance 107

2 Previous Works

Our goal is to realize SLAM using the distribution of line segments. There are
some SLAM works that use line and road markings. Therefore, we discuss line-
based SLAM and SLAM using road markings separately in this section.

2.1 Line-Based SLAM

There are previous works on line-based SLAM that have taken different
approaches. [10] proposed a real-time line-based SLAM. They added straight
lines to a monocular extended Kalman filter (EKF) SLAM, and realized the
real-time system using a new algorithm and a fast straight-lines detector that
did not insist on detecting every straight line in the frame.

Another approach for the line-based SLAM is using lines and other features.
[7] proposed a method of motion estimation using points and lines by stereo line
matching. They developed a new stereo matching algorithm for lines that was
able to deal with textured and textureless environments.

In addition, [15] proposed a visual 6-DOF SLAM (using EKF) based on the
structural regularity of building environments, which is called the Manhattan
world assumption [2]. By introducing a constraint about buildings, the system
achieved decreasing position and orientation errors.

2.2 SLAM Using Road Markings

There are also previous works using road markings for SLAM for a vehicle. [14]
proposed a method for SLAM using road markings that they previously learned.
They detected feature points from learned road markings and achieved a high
accuracy in estimation of a camera pose.

[4] proposed a method which detects road markings robustly for SLAM.
They developed a line detector which did not affected by illumination condition
by adapting Otsu thresholding method.

In addition, [11] combined GPS, proprioceptive sensors, and road markings
for SLAM.

Jeong et al. [6] proposes a method for SLAM using 3D point cloud of seg-
mented road patterns reconstructed from images, which are also applied to a
loopclosure algorithm for improvement of localization.

3 System Overview

We provide an overview of a line-based SLAM considering the distribution of
road markings. We implement our method into both a single-camera system
and a multi-camera system. We explain the method of the multi-camera system
because the radical method for both the single-camera and the multi-camera
systems is the almost same.
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Fig. 1. Examples of intra- and inter-camera correspondences [13].

As a premise, our SLAM method requires wheel odometry. A relative camera
pose and position in each frame are estimated from the data from the wheel
sensors. Then, we obtain line segments from input images for each frame t by the
line segment detector (LSD) algorithm. To correspond detected line segments,
we consider the following three cases: matching between the front images features
at frame t and t − 1, matching between the rear image at frame t and t − 1, and
matching between the rear image at frame t and the front image at frame t − s.
However, the viewing directions are very different, so it is hard to find matching
segments, especially in the case of the third case. For a robust match, we make
the feature patches around the line segments warp into other frames. Due to this
warping processing, the perspective appearance of the patch resembles a target
image. In addition, searching for the appropriate s value for the best match
enables us to find the correspondences between a rear image and multiple front
images more robustly. As long as corresponding line segments are detected, each
line segment can be tracked over. Figure 1 indicates examples of matching.

Using these corresponding line segments, 3D line segments can be initially
estimated using a method based on the Manhattan world assumption. After
that, bundle adjustment is applied to the relative camera pose, positions and
3D line segments to optimize them. In a cost function of bundle adjustment,
which is used for the optimization, we implement a new element considering
the distribution of road markings, which is defined by 4-component Gaussian
mixture distribution. Due to this element, the accuracy of localization improves
and tilted line segments, which include some errors, in the generated map are
revised.

The difference between a single-camera system and a multi-camera system
is that the former does not consider the third matching case: matching between
the rear image at frame t and the front image at frame t − s.
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4 Notation

We explain the notations briefly before discussing our method in detail. First, we
define the four coordinates W , C1

t, C2
t and V t, which indicate the world, front

camera, rear camera, and vehicle coordinate systems, respectively. The relative
transformations from the world coordinate system to the vehicle coordinates
system at frame t are expressed as Rvw

t, Tvw
t, and these from the vehicle coor-

dinates system to the front or the rear camera coordinate system are expressed
as Rc1v, Tc1v, Rc2v, Tc1v. The relative pose and position of the front and rear
cameras are calibrated beforehand. Using these notations, the projections from
a world point p = (x, y, z)T to camera point q = (qx, qy, qz)T are calculated as
follows:

qk =

⎛
⎝

qx

qy

qz

⎞
⎠ = Rckv(Rvw

tp + Tvw
t) + Tckv (1)

where k denotes camera 1 or camera 2. For this case, k = 1 indicates the front
camera. Then, projection from a camera point q to a image point u = (u, v)T is
calculated as follows:

uk =
(

u
v

)
= π

⎛
⎝

qx

qy

qz

⎞
⎠ =

(
qx/qz

qy/qz

)
(2)

Secondly, the 3D line Lk is expressed as six-vector (pk
T, rk

T)T. The three-vectors
pk is a center point of the 3D line and rk is the direction of the 3D line. The 2D
line lk, which is a projection line of Lk in the image plane, is given as four-vector
(uk

T,dk
T)T. Point u is calculated in the same way as the world point p and the

vector d in the image plane is calculated as follows:

Dk =

⎛
⎝

Dx

Dy

Dz

⎞
⎠ = RckvRvw

trk (3)

dk =
(

dx

dy

)
=

(
qzDx − qxDz

qzDy − qyDz

)
(4)

where Dk is a point of the camera coordinate system. Finally, the wheel odometry
x is expressed as follows:

xt+1 =

⎛
⎝

xt+1

zt+1

θt+1

⎞
⎠ = xt + Δxt + εx

t (5)

where Δxt denotes its relative movement from a previous time and εx
t denotes

the noise of Δxt. In the proposed method, we estimate the 3-DOF motion of
the vehicle coordinates (x, z, θ) in a 2D-environment. When x0, which is the
initial position of the vehicle, is in the same position as the origin of the world
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coordinate system, xt equals Rvw
t and Tvw

t. We suppose that εx
t is zero-mean

Gaussian white noise with covariance Σx.

εx
t ∼ N (0, Σx) (6)

Σx =

⎛
⎝

σx
2 0 0

0 σz
2 0

0 0 σθ
2

⎞
⎠ Δt (7)

where σx, σz, and σθ denote error variances. The covariance increases in propor-
tion to time, supposing that εx

t simply increases.

5 Proposed Method

The purpose of our method is to enhance the accuracy of line-based SLAM
by bundle adjustment, which considers the distribution of the line segments.
Our system consists of two parts: line matching and bundle adjustment. In this
section, we explain how to realize them individually.

5.1 Line Matching

Our method has two matching algorithms: matching inter-camera correspon-
dences and matching intra-camera correspondences as it is also called in [8], the
basis of which is warping patches based on the Manhattan world assumption.
We explain them individually.

Inter-camera Correspondences. This method of matching is used between
the front and the rear images, and is not featured with a single-camera system.
The blue-colored rectangle shown in Fig. 2(a) is a patch, which is 20 pixels wide
and has a detected red-colored line segment in the center. The patch is trans-
formed into a target image plane by a warp function, which considers the place
where the line segments are detected. Conceivable places where they can be
detected include front walls of buildings or road surfaces, as shown in Fig. 1(a)
and (b). Therefore, two types of warping processing are performed on all line
segments in this matching algorithm.

To explain the case of the front walls of building, according to the Manhattan
world assumption, a y-coordinate value of all the points in the patch in C2

t is
h, which indicates the height of the attached camera. Therefore, the 3D point in
the patch is calculated as follows:

pr =

⎛
⎝

h(um,2 + α)/(vm,2 + β)
h

h/(vm,2 + β)

⎞
⎠ (8)

We define the coordinate of the patch as um,2 = (um,2 + α, vm,2 + β)T, where
um,2 denotes the center point of the line segment and α and β are the Euclidean
distances from the center point.
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In the case of the line segments detected on the road surface, the 3D point
in the patch is calculated as follows:

pbf =

⎛
⎝

dx

dx(vm,2 + β)/(um,2 + α)
dx/(um,2 + α)

⎞
⎠ (9)

The x -coordinate value of all the points in the patch in C2
t is dx, which is shown

in Fig. 1(b), under the assumption.

Fig. 2. (a) A rear image with a patch of the red detected line. (b) The warped patch
converted from (a). (c) The front image [13]. (Color figure online)

The result of the warping is shown in Fig. 2(b). It shows that the perspective
appearance becomes similar to the target image (Fig. 2(c)). Subsequently, we
judge whether the warped patch and the line segments in the target image
correspond or not with using an error ellipse based on the EKF proposed by
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[3]. We use a raster scan of the error ellipse of the warped patch and calculate
a zero-mean normalized cross-correlation (ZNCC) score. At the position where
the ZNCC is the highest, we calculate two more values: the angle between the
warped line segment and the line segments in the target image, and the distances
from the endpoints of warped line segments to the line segment in the target
image. If these two values are lower than the threshold, they are regarded as the
correspondence.

Although we propose this matching method, it has two ambiguous points:
one is that we cannot precisely distinguish whether the line segments exist on
buildings or the road surface, and the precise value of dx cannot be calculated.
To exclude these ambiguous elements, we test two calculations, for the building
and road surface, and change dx at regular intervals in each experiment. Then
we decide the correspondence based on the highest ZNCC score.

Fig. 3. Examples of matching using our method (a)–(f) and LEHF [5] (g)–(l). (a)–
(d) and (g)–(j) are matched pairs of front and rear images. (e) (f), (k), and (l) are
matched pairs of front images. The red lines and green lines show correct and incorrect
matching, respectively [13]. (Color figure online)

Intra-camera Correspondences. This method of matching is used between
pairs of front images or pairs of rear images. There are three conceivable places
where the line segments can be detected in this method: two of three are the
same as the inter-camera correspondences and the last one is the side wall of
buildings, as shown in Fig. 1(c) and (d). The 3D point in the patch is calculated
as follows:

pbs =

⎛
⎝

dz(um,1 + α)
dz(vm,1 + β)

dz

⎞
⎠ (10)

Under the Manhattan world assumption, z -coordinate of all the 3D points in
the patch is dz, which is shown in Fig. 1(b), so Eq. 10 can be defined. As well
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as the inter-camera correspondences, we change dz at regular intervals and find
the best one for matching.

The Matching Result. The results of matching are shown in Fig. 3.
Figure 3(a) to (d) indicate intra-matching correspondences with using our

method, and Fig. 3(g) to (j) indicate correspondences using LEHF [5]. Although,
the enough number of the line segments cannot detected, the accuracy of the
matching obviously increases.

Figure 3(e) and (f) indicate inter-matching correspondences with using our
method, and Fig. 3(k) and (l) indicate correspondences using LEHF [5]. The
accuracy of them is the almost same.

Using our method, we can classify all matched line segments into
on the buildingwalls or on the road , which LEHF cannot do. This detected
place data are important for the next step.

5.2 Initial Estimation of 3D Line

We use two methods to estimate the 3D line segments, which will be explained
individually in this section.

First, we estimate line segments using a method based on the line of inter-
section of planes that passes the camera center and the line segment. Figure 4(a)
shows examples of road maps generated by the 3D information calculated by this
method, although most of them lie wrong place. The reason for this is because
when the line segments run parallel to the travel direction, the angle between
the planes passing the segments becomes too low. The 3D information create
error because of that.

Secondly, we estimate the line segments using Eqs. (8), (9) and (10) as
explained in Sect. 5.1. In this method, we can obtain some 3D information per
one line segment, because it requires only one line segment to calculate the 3D
information and each line segment has some corresponded line segments. There-
fore, we choose one line segment by minimum median method. An element used
in the minimum median method is the re-projection error, which is calculated
from the perpendicular distance from a reprojected 3D line to the endpoints of
a detected line in the image plane. This method is widely used and is defined
in a paper written by [1]. Figure 4(b) shows a result of this method, which is
obviously better than first method.

5.3 Optimization by Bundle Adjustment

We optimize the relative camera pose, position (Rvw
t, Tvw

t) and the 3D line
segments Lj by bundle adjustment. We define the set of corresponding line
segments Ω as:

Ω ={ωi = (t, k, j, p)|
t ∈ {1, . . . , T}, k ∈ {1, 2}, j ∈ {1, . . . , J} p ∈ {1, 2, 3}} (11)
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where the ith line segment indicates that a 3D line is observed in a place p
by camera k at frame t. In our method, the objectives are to minimize the re-
projection errors of all the line segments and to minimize the angle errors of the
line segments observed in the road surface. Then, the cost function is defined as
following.

E = el + eθ =
1
2

∑
i

2∑
n=1

d2⊥(gn
i, li) +

1
2

∑
m

(eθ
m)2 (12)

where d⊥(a,b) denotes the perpendicular distance from a point a to a line b
in images, g1

i and g2
i denote the endpoints of observed line segments, and eθ

denotes an angle error, which can be calculated using the difference between the
travel direction of the vehicle and the vector of the line segments. An objective
is to find the best values of Rvw

t, Tvw
t, and Lj to minimize E. We use the

iterative non-linear Levenberg-Marquardt optimization algorithm with numeri-
cal differentiation based on a method proposed by [9]. We explain the calculation
method for the reprojection error and angle error individually.

(a) Standard initial estimation @(b) Our initial estimation

(c) Without the prior distribution (d) With the prior distribution

Fig. 4. Examples of road maps [13].
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Reprojection Error. We use the following equation to calculate d⊥(gn
i, li):

ei
l = d⊥(gn

i, li) =
dy(gx

i − ui) − dx(gy
i − vi)√

dx
2 + dy

2
(13)

To solve the bundle adjustment, we make Jacobian matrices made from the result
of differentiated Eq. (13) in the relative camera pose, position (Rvw

t, Tvw
t) and

the 3D line segments Lj . The differentiation equations are expressed as follows
by conforming to the chain rule:

∂el
i

∂Rvw
t =

∂el
i

∂qi

∂qi

∂Rvw
t (14)

∂el
i

∂Tvw
t =

∂el
i

∂qi

∂qi

∂Tvw
t (15)

∂el
i

∂pj
=

∂el
i

∂qi

∂qi

∂pj
(16)

∂el
i

∂rj
=

∂el
i

∂Di

∂Di

∂rj
(17)

where q and D are defined as Eqs. (1) and (4), respectively.
In addition, we include a geometric constraint into the cost function to

enhance the accuracy of the optimization. Under the Manhattan world assump-
tion, y-coordinate of the line segments detected on the road surface is absolutely
h, so we keep it constant during the process of bundle adjustment. Since dx

and dz have ambiguousness, we do not incorporate that constraint. Figure 4(c)
and (d) are the result of mapping after bundle adjustment without or with the
constraint, respectively. The figures show that the constraint works well.

Angle Error. First, we show that dθ in Fig. 5 is an angle between the travel
direction and the vector of the 3D line segments, and it has either a positive or
a negative value; the maximum value is π

2 and the minimum value is −π
2 . It is

calculated as follows:

dθ = arctan
Fz

Fx
− arctan

rz

rx
(18)

((Fx � 0 and Fz � 0) or (Fx � 0 and Fz � 0))

dθ = arctan
Fz

Fx
− arctan

rz

rx
− π (19)

((Fx � 0 and Fz � 0) or (Fx � 0 and Fz � 0))

where F = (Fx, Fy, Fz) denotes the vehicle’s direction of travel. To establish the
consistency of the sign of dθ, we take π from dθ in Eq. (19). In our method,
we add a new constraint about dθ. As I discussed in Sect. 1, we suppose that
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Fig. 5. A schematic diagram of dθ [13].

most of the road markings are parallel or vertical to the vehicle’s direction of
travel. Although some markings include diagonal lines, there are many markings
that include parallel or vertical lines; for examples, car lanes, and markings at
crosswalks.

We compute angle histogram of real road markings based on a road pattern
map collected by a road survey company as shown in Fig. 6, which consists of line
patterns. The histogram for various dθ computed from the map is shown in Fig. 7.
This histogram suggests that line segments on the road are mostly parallel of
vertical with the vehicle driving direction. According to the angle histogram, we
consider the prior distribution for the angle dθ of the line segments as described
in the next paragraph.

In the case of the parallel lines to the vehicle driving direction, we assume
that dθ conforms to the Gaussian distribution. In the case of the vertical lines to
the vehicle driving direction, we assume that dθ ± π

2 conforms to the Gaussian
distribution. Considering the diagonal lines, we define one more Gaussian dis-
tribution. It prevents the diagonal lines from being corrected to the parallel or
vertical lines. Figure 8 shows their distribution. The equation for each Gaussian
distribution can be expressed as follows:

P1(dm
θ |μ1 = 0, σ1 = σα) =

1√
2πσα

2
exp(− 1

2σα
2
(dm

θ − μ1)2)
(20)
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@

Fig. 6. The road pattern map around JR Shin-Kawasaki Station collected by a road
survey company.

Fig. 7. Histogram of dθ computed from the road pattern map shown in Fig. 6.

P2(dm
θ |μ2 =

π

2
, σ2 = σα) =

1√
2πσα

2
exp(− 1

2σα
2
(dm

θ − μ2)2)
(21)

P3(dm
θ |μ3 = −π

2
, σ3 = σα) =

1√
2πσα

2
exp(− 1

2σα
2
(dm

θ − μ3)2)
(22)
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Fig. 8. A four-component Gaussian mixture distribution [13].

P4(dm
θ |μ4 = 0, σ4 = σβ) =

1√
2πσβ

2
exp(− 1

2σβ
2
(dm

θ − μ4)2)
(23)

The numbers in the legend of Fig. 8 correspond to these equations. Pn(dm
θ ) is

computed for each line segment m, and then n is decided as n taking the max-
imum of Pn(dm

θ ). According to the decided n, the cost function for the angle
error is computer for each line segment as

em
θ =

dθ − μn

σn
(24)

This equation indicates that if the line segment is vertical, but is a little tilted,
it is corrected to the accurate vertical line; and if it is parallel, but is a little
tilted, it is corrected to the accurate parallel line.

As well as reprojection error, we make a Jacobian matrix. The differentiated
equations are expressed as follows:

∂eθ
j

∂r
=

(
∂eθ

j

∂rx

∂eθ
j

∂ry

∂eθ
j

∂rz

)
(25)

∂eθ
j

∂rx
=

rz

rx
2 + rz

2
(26)

∂eθ
j

∂ry
= 0 (27)

∂eθ
j

∂rz
= − rx

rx
2 + rz

2
(28)
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In addition, we obtain the best value of σα and σβ by changing them at
regular intervals for the best optimization in each experiment.

5.4 Extended Prior Distribution

By extending the prior distribution of the line segments for the angle to also
the distance from the vehicle, we aim to improve the accuracy of the proposed
SLAM. For generating the prior distribution for both angle and distance, we
assume that the road patterns consist of the simple road patterns. Then, we
generate the prior distribution from the road pattern map collected by a road
survey company as shown in Fig. 6 according to the following procedure.

1. Sub-grid division of the road map
2. Extract line segments from the road map and compute the distance ρ and

the angle θ
3. Vote for each line segment to generate the histogram in ρ - θ 2D space.
4. Fitting the voted histogram to 2D Gaussians.

In the last step, the voted histogram are fitted to 2D Gaussian of ρ and θ as
shown in Fig. 9. The following equations represent the 2D Gaussian distribution
for fitting.

Pn(ρj,k, θj,k|μn,ρ, μn,θ, σn,ρ, σn,θ)

=
1

2πσn,ρσn,θ
exp

{
−1

2

((
ρj,k − μn,ρ

)2
σ2

n,ρ

+

(
θj,k − μn,θ

)2
σ2

n,θ

)}

(29)
where n indicate the ID number for Gaussians for fitting. The centroid of each
Gaussian (μn,ρ, μn,θ) is set to the maximum voting position. The standard devi-
ation of each Gaussian σn,ρ, σn,θ is computed from the distribution of the voted
distribution. We limit the number of Gaussian up to 10.

In this case, we extend Eq. (12) as the following Eq. (30) which is optimized
for estimating the poses of the camera (Rvw

t, Tvw
t) and 3D positions of line

segment Lj based on bundle adjustment.

E = el + eρ + eθ =
1
2

∑
i

2∑
n=1

d2⊥(gn
i, li) +

1
2

K∑
k=1

∑
j

(eρ
j,k)2 +

1
2

K∑
k=1

∑
j

(eρ
j,k)2

(30)
where el, eθ, and eρ represent the reprojection error, the angle error, and the
distance error terms for the line segments, respectively. The reprojection error
is defined same as Eq. (13). The angle error and the distance error are defined
as follows, where j represents the ID of line segment detected in image frame k.

Distance Error. Distance error of each line segment is computed as the fol-
lowing equation.

ej,k
ρ =

ρj,k − μn,ρ

σn,ρ
(31)
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Fig. 9. The flow of computing the prior distribution for the distance and the angle for
line segments from the histogram.

In the similar way as the previous section, n is decided as n taking the maxi-
mum of Gaussians. The Jacobian for the distance error term can be computed
according to the chain rule.
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5.5 Angle Error

Angle error of each line segment is computed as the following equation.

ej,k
θ =

θj,k − μj,k,α
θ

σj,k,α
θ

(39)

The Jacobian for the angle error term can be computed according to the
chain rule.
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6 Experiment

In this section, we introduce a practical experiment that uses a real vehicle
driving in an urban environment. Two cameras and a RTK-GPS, which can get
high accuracy of self-position, are attached to the vehicle, shown in Fig. 10. The
frame rate of the camera is 3 fps and we prepare two datasets: one is a straight
scene that has 72 frames (Dataset 1) and another is curve scene that has 200
frames (Dataset 2). We use the GPS as a ground truth. We evaluate the accuracy
of localization and mapping individually. In this experiment, we use a desktop
PC with Intel(R) Core(TM) i7-6800K CPU @ 3.40 GHz 3.40 GHz and 64.0 GB
RAM. MatLab is used for computation.

Fig. 10. The vehicle for data collection.
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(a) Dataset 1 (b) Dataset 2

Fig. 11. The trajectory results obtained from datasets 1 and 2 in the experiment of line
(S). Comparison of the results estimated by ground truth, odometry, optimized data
without the prior distribution, and optimized data with the prior distribution [13].

Table 1. Localization error per frame [cm/frame].

Dataset 1 Dataset 2

No prior Angle Angle + Distance No prior Angle Angle + Distance

Line (S) 20.93 11.40 13.12 88.05 48.16 55.91

Line (M) 9.40 7.69 5.01 102.8 38.2 72.2

Line-point (S) 13.36 7.06 5.38 90.96 57.03 76.80

Line-point (M) 3.89 2.19 3.63 133.95 54.59 117.3

6.1 Evaluation of Localization

In our experiment, we apply our method to four cases; (1) single-camera system
with line-based SLAM (called line (S)), (2) single-camera system with point-
and-line based SLAM (point-line (S)), (3) multi-camera system with line-based
SLAM (line (M)), and (4) multi-camera system with point-and-line based SLAM
(point-line (M)). We check how much the accuracy of localization improves when
the directional distribution of road markings is considered in each cases.

Figure 11 shows trajectories of the vehicles in the case of line (S) in two
datasets. We compare four types of data in each case; ground truth, odometry,
optimized data without the prior distribution, and optimized data with the prior
distribution only for angle. A closeup area (1) of Fig. 11(a) and (b) indicates that
the optimized data with the prior distribution is the closest to the ground truth
and it has higher accuracy than that without the constraint.

Figures 12 and 13 provide a quantitative analysis of the accuracy of localiza-
tion. They are position errors, which indicate a perpendicular distance to the
ground truth. In addition, Table 1 shows the sum of the position errors in each
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odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(a) line (S)

odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(b) line (M)

odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(c) line-point (S)

odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(d) line-point (M)

Fig. 12. Comparison of position error in each frame (dataset 1).

case and the rate of improvement in percentage. The accuracy improves in all
experiments by considering the prior distribution. For dataset 1, the accuracy
improves about 50% in the single-camera experiment. The accuracy of line (S)
with the constraint is as well as line (M) without it. For dataset 2, the accuracy
improves, especially in the multi-camera experiments. Since our SLAM method
is based on the Manhattan world assumption, it is not appropriate for the curv-
ing scene because the assumption does not stand up well. However, by using the
prior distribution, the error generated in the curving scene is corrected. It may
be a reason for the high improvement rate seen in dataset2.

Concerning to the comparison of the error between the previous simple prior
distribution and the extended prior distribution, the errors for line (M) and
line-point (S) in the dataset 1 are significantly improved, while the error for
line (S) and line-point (M) are increased unfortunately. This could be because
of the distance error distibution does not work especially for line (S) and
line-point (M).
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odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(a) line (S)

odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(b) line (M)

odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(c) line-point (S)

odometry
without the prior distribution
with the prior distribution for the angle
with the prior distribution for both the distance and the angle

(d) line-point (M)

Fig. 13. Comparison of position error in each frame (dataset 2).

Since dataset 2 is curve case, which is not much included in the dataset for
generating prior distribution. Therefore, the improvement is not drastic because
the prior distribution for distance and angle is mainly for the straight lane.

6.2 Evaluation of Mapping

The detected line segments can be used to make digital maps. Figure 14 show
the results of the digital map. To make a quantitative evaluation of the results
of the digital map, we compute TPR (True Positive Rate) and PRS (Precision)
by comparing with the ground truth map measured by a survey company. TPR
shown in Table 2 represents the rate in length of matched line of the ground truth
map with the map of the detected lines by the proposed method. The higher
TPR means the higher reconstruction rate by the detected line by the proposed
method. PRS shown in Table 3 represents the rate in length of correctly detected
line segments by the proposed method. The higher PRS means the lower rate of
wrongly detected line segments by the proposed method.
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(a) Dataset 1 (b) Dataset 2

Fig. 14. Digital maps made from detected line segments [13].

Both Tables 2 and 3 demonstrate that the prior distribution effectively
improve the accuracy of the generated map by the detected line segments in the
proposed method. The improvement in dataset 1 is more than that in dataset.
The reason is that dataset 2 has more diagonal lines, which are collected to paral-
lel or vertical lines although it does not. Dataset 1 has more vertical and parallel
lines, so the rate of inliers increases in any experiment. Figure 15 shows whether
the line segments in the digital map are whether inlier or outlier in line (S) of
dataset 1. Red lines indicate inlier lines and green lines indicate outlier lines.
Tilted lines in Fig. 15(a) is revised, so they change to green lines in Fig. 15(b).

Table 2. TPR (True Positive Rate) [%] represents the rate in length of matched line
of the ground truth map with the map of the detected lines by the proposed method.

Dataset 1 Dataset 2

No prior Angle Angle + Distance No prior Angle Angle + Distance

Line (S) 28.5 47.5 56.5 40.1 43.7 45.7

Line (M) 35.2 41.6 52.7 39.6 44.0 43.3

Line-point (S) 39.1 49.7 52.5 40.5 43.8 42.6

Line-point (M) 49.6 52.8 55.3 42.2 45.2 44.7

Table 3. PRS (Precision) [%] represents the rate in length of correctly detected line
segments by the proposed method.

Dataset 1 Dataset 2

No prior Angle Angle + Distance No prior Angle Angle + Distance

Line (S) 28.6 56.2 61.2 38.4 42.4 42.1

Line (M) 41.8 50.6 60.5 33.0 40.8 38.5

Line-point (S) 45.3 64.2 62.2 32.0 44.6 42.1

Line-point (M) 57.5 62.2 66.9 34.9 45.1 38.6
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(a) Without the prior distribution (b) With the the prior distribution

Fig. 15. Mapping results in line (S) Red lines indicate inlier lines and green lines
indicate outlier lines [13]. (Color figure online)

7 Conclusions

In this paper, we propose a line-based SLAM from an image sequence captured
by a camera mounted on a vehicle in consideration with the prior distribution of
line features that detected in an urban environment, which includes a lot of line
feature segments on road markings and buildings. We assume the prior distri-
bution can be represented as a combination of Gaussian distributions, and then
define a cost function of bundle adjustment based on the prior distribution. We
first consider the prior distribution in angle of the line segments, and then extend
to make it 2D, the distance and angle of the line segments. In the experiments
using image sequences captured with a vehicle running in an urban scenes, we
demonstrate that the accuracy of SLAM improves in all cases. The proposed
method successfully improves the accuracy of the single-camera SLAM as well
as the multi-camera SLAM. We also generate digital maps from the detected
line segments, which can also demonstrate the prior distribution contributes to
correcting wrong line segments.
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Abstract. Perspective n-Point (PnP) problem is in focus of 3D com-
puter vision community since the late 80’s. Standard solutions deal with
the pinhole camera model, the problem is challenging due to the perspec-
tivity. The well-known PnP algorithms assume that the intrinsic camera
parameters are known, therefore, only extrinsic ones are needed to esti-
mate. It is carried out by a rough estimation, usually given in closed
forms, then the accurate camera parameters are obtained via numerical
optimization. In this paper, we show that both the weak-perspective and
scaled orthographic camera models can be optimally calibrated including
the intrinsic camera parameters. Moreover, the latter one is done with-
out iteration if the L2 norm is used. It is also shown that the calibration
can be inserted into a structure from motion algorithm. We also show
that the scaled orthographic version can be powered by GPUs, yielding
real-time performance.

Keywords: Weak-perspective camera model ·
Perpective n-point problem · Structure from motion

1 Introduction

The problem of optimal methods in multiple view geometry [10] is a very chal-
lenging research issue. This study deals with camera calibration, a key problem
in computer vision. There are well-known solutions [9,36] to calibrate the per-
spective camera; these methods give a rough estimate of the parameters first,
then refine them using numerical optimization, such as the Levenberg-Marquardt
iteration. Optimal camera calibrations using the L2 norm including the popular
Perspective n-point Problem (PnP) were published for the perspective camera
only if the intrinsic camera parameters are known [12,21,27,37]. The calibration
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can also be solved under the L∞ norm [16] as well as the Structure from Motion
problem [5,19,23]; however, the uncalibrated problem has not been optimally
solved yet in the least squares sense to the best of our knowledge.

Weak-Perspective and Scaled Orthographic Camera Calibration. The
optimal estimation of the affine calibration is easy since it is a linear problem
as it has been shown in several studies, such as that of Shum et al. [28]. The
weak-perspective [7] and paraperspective [13] calibration have also been consid-
ered, but the proposed algorithms are not optimal since these papers focus on
finding the link between para/weak-perspectivity and real projection. Kanatani
et al. [17] also dealt with the calibration of different affine cameras, but they did
not consider the optimality itself.

The scaled orthographic calibration can optimally be calibrated as discussed
in our work [20]. An iteration was proposed by the authors to calibrate the scaled
orthographic camera, and it converges to the global minima as proved in [20].
The orthographic camera is not considered separately, but the method can be
used for that purpose as well if the scale of the scaled orthographic camera is
fixed. Another possible solution [22] for the scaled orthographic calibration is
to do an affine calibration and then find the closest scaled orthographic camera
matrix to the affine one. However, optimality cannot be guaranteed in this case.

The optimal camera calibration method is proposed for weak-perspective
cameras in this paper; it estimates the camera parameters if 3D–2D point cor-
respondences are known between the points of a 3D calibration object and cor-
responding locations on the image. The minimization is optimal in the least
squares sense.

Structure from Motion. The optimal weak-perspective camera calibration is
theoretically very interesting, and it has practical significance as well. We show
here that the calibration algorithms can be inserted into 3D reconstruction - also
called Structure from Motion (SfM) - pipelines as a substep yielding very efficient
weak-perspective reconstruction. Mathematically, the problem is a factorization
one: the so-called measurement matrix has to be factorized into the matrices
containing camera and structure parameters.

The classical factorization method, when the measurement matrix is fac-
torized into 3D motion and structure matrices, was developed by Tomasi and
Kanade [31] in 1992. The weak-perspective extension was published by Wein-
shall and Kanade [35]. Factorization was extended to the paraperspective [25]
case as well as to the real perspective [30] one.

The problem of missing data is also a very important challenge in 3D recon-
struction: one cannot guarantee that the feature points can be tracked over the
whole image sequence since feature points can appear and/or disappear between
frames. The problem of missing data was already addressed by Tomasi and
Kanade [31]; however, they use only a naive approach which transforms the
missing data problem to the full matrix factorization by estimating the missing
entries. Shum et al. [28] gave a method to reconstruct the objects from range
images; their method was successfully applied to the SfM problem by Buchanan
and Fitzgibbon [4].
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The mainstream idea for factorization with missing data is to decompose
the rank 4 measurement matrix into affine structure and motion matrices which
are of dimension 4. The Shum-method [4,28] also computes affine structure and
motion matrices, but the dimension of those matrices is three. This problem
can mathematically be solved by Principal Component Analysis with Missing
Data (PCAMD) as pointed out by mathematicians since the middle 70’s [26].
These methods can be applied directly to the SfM problem as it is written in [4].
Hartley and Schaffalitzky [11] proposed the PowerFactorization method which
is based on the Power method to compute the dominant n-dimensional sub-
space of a given matrix. Buchanan and Fitzgibbon [4] handled the problem as
an alternation consisting of two nonlinear iterations to be solved; they suggested
the usage of the Damped-Newton method with line search to compute the opti-
mal structure and motion matrices. Kanatani et al. [17] showed that the recon-
struction problem can be solved without a full matrix factorization. Marques
and Costeira [22] solved the factorization problem considering the scaled ortho-
graphic camera constraints; their method was basically an affine factorization,
but the camera matrices were refined based on scaled orthographic constraint
at the end of each cycle. An interesting approach was also proposed by Whang
et al. [34]: their so-called quasi-perspective reconstruction fills the gap between
affine and perspective approaches.

One of the aims of this study is to show that SfM algorithms can be run
rapidly by utilizing the extreme computational power of the Graphics Processing
Unit (GPU). The Bundle Adjustment (BA) method [2] is powered by GPU in
several 3D framework, such as that of Choudhary et al. [6]. published There are
other kinds of GPU-based 3D reconstruction methods such as [29,33], however,
we only concentrate on the SfM problem here.

Contribution. This paper is based on our two conference [8,18] and one jour-
nal [20] publications. In the latter one, it was shown that the scaled orthographic
camera calibration can be optimally obtained via an iteration. This method was
speeded up by GPUs as it written in [18]. The weak-perspective calibration is
introduced in 2017 [8], we gave closed-form solution for the problem. Both the
weak-perspective and scaled orthographic calibration can be built into Structure
from Motion (SfM) pipelines.

This paper summarized the result of these studies [8,18,20]. The methods
written here are interesting theoretically and useful practically. For the latter
purpose, we show that the proposed weak-perspective and scaled orthographic
factorization can give good initial values for perspective bundle adjustment [2],
and it can be inserted into a 3D reconstruction pipeline.

2 Problem Statement

Given the 3D coordinates of the points of a static object and their 2D projections
in the image, the aim of camera calibration is to estimate the camera parameters
which represent the 3D → 2D mapping.
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Let us denote the 3D coordinates of the ith point by Xi, Yi, and Zi. The cor-
responding 2D coordinates are denoted by ui, and vi. The perspective (pinhole)
camera model is usually written as follows

⎡
⎣

ui

vi
1

⎤
⎦ ∼ C[R|T3D]

[
Xi Yi Zi 1

]T
, (1)

where R is the rotation (orthonormal) matrix, and T3D the spatial translation
vector between the world and object coordinate systems. These parameters are
usually called the extrinsic parameters of the perspective camera. The operator
‘∼’ denotes equality up to an unknown scale. The intrinsic parameters of the
camera are stacked in the upper triangular matrix C [9].

If the above equation is multiplied by the inverse of camera matrix C,
the following basic camera calibration formula is obtained: C−1 [ui vi 1] ∼
[R|T3D]

[
Xi Yi Zi 1

]T. If the intrinsic parameters stacked in matrix C and the

spatial coordinates in
[
Xi Yi Zi 1

]T are known then the calibration problem
is reduced to the estimation of the extrinsic matrix/vector R and T3D. This
is the so-called Perspective n-point Problem (PnP). There are several efficient
solvers [12,21,27,37] for PnP, however, estimates for the intrinsic parameters of
the applied cameras are usually not presented. We deal with this problem, and it
is shown here that the weak-perspective camera calibration is possible without
the knowledge of any intrinsic camera parameters.

Scaled orthographic Weak−perspective Affine

Fig. 1. Pixels for different camera models. Scaled orthographic, weak-perspective and
affine camera pixels are equivalent to square, rectangle, and parallelogram, respec-
tively [8].

If the depth of object is much smaller than the distance between the camera
and the object, the weak-perspective camera model is a good approximation:

[
ui vi

]T = [M |t] [Xi Yi Zi 1
]T

, (2)

where M is the motion matrix consisting of two 3D vectors (M = [m1,m2]T )
and t is a 2D offset vector which locates the position of the world’s origin in the
image.

Contrary to the affine camera model, the rows of the motion matrix are not
allowed to be arbitrary for the weak-perspective projection, they must satisfy
the orthogonality constraint mT

1 m2 = 0. A special case of the weak-perspective
camera model is the scaled orthographic one, when mT

1 m1 = mT
2 m2. If the affine
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camera is considered, there is no constraint: the elements of the motion matrix
M may be arbitrary.

The difference between the camera models can be visualized by the shapes of
the corresponding camera pixels. Affine camera model is represented by a rect-
angular pixel: the opposite sides are parallel to each other. The weak-perspective
model constraints that the adjacent sides are perpendicular, while the length of
the sides are equal for the scaled orthographic camera model. The pixels are
pictured in Fig. 1.

The optimal calibration of the affine camera in the least squares sense is
relatively simple as the projection in Eq. 2 is linear w.r.t. unknown parameters.
The solution can be obtained by the Moore-Penrose pseudo-inverse.

The scaled orthographic camera estimation is a more challenging problem.
To the best of our knowledge, there is no closed-form solution. We [20] proved
that the optimal estimation can be given via an iteration. However, this method
is relatively slow due to the iteration. One of the main contributions of this
paper is that the weak-perspective case is solvable as a root finding problem of a
11-degree polynomial.

3 Optimal Camera Calibration for Weak-Perspective
Projection: The W-PnP Method

In this section, a novel weak-perspective camera calibration is proposed. The
goal of the calibration is to minimize the squared reprojection error in the least
squares sense. This is written as

1
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N∑
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where N is the number of points to be considered in the calibration, and ||·||
denotes the L2 (Euclidean) vector norm. As Horn et al. [14] proved, the transla-
tion vector t is optimally estimated if it is selected as the center of gravity of the
2D points. These are easily calculated as ũ = 1/N

∑N
i=1 ui, and ṽ = 1/N

∑N
i=1 vi.

If the weak-perspective camera model is assumed, the error defined in Eq. (3)
can be rewritten in a more compact form as
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where

w1 = [u1 − ũ, u2 − ũ, . . . , uN − ũ]T , (5)

w2 = [v1 − ṽ, v2 − ṽ, . . . , vN − ṽ]T , (6)

S =

⎡
⎣

X1 X2 . . . XN

Y1 Y2 . . . YN

Z1 Z2 . . . ZN

⎤
⎦ . (7)
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If the Lagrange multiplier λ is introduced, the weak-perspective constraint
can be considered. The error function is modified as follows

1
2

∣∣∣∣w1 − mT
1 S

∣∣∣∣2 +
1
2

∣∣∣∣w2 − mT
2 S

∣∣∣∣2 + λmT
1 m2 (8)

The optimal solution of this error function is given by its derivatives with
respect to λ, m1, and m2:

mT
1 m2 = 0, (9)

SSTm1 − Sw1 + λm2 = 0, (10)
SSTm2 − Sw2 + λm1 = 0. (11)

m2 is easily expressed from Eq. (10) as

m2 =
1
λ

(
Sw1 − SSTm1

)
. (12)

If one substitutes m2 into Eqs. (11), and (9), then the following expressions are
obtained:

1
λ

SST
(
Sw1 − SSTm1

) − Sw2 + λm1 = 0, (13)

1
λ

mT
1

(
Sw1 − SSTm1

)
= 0. (14)

If Eq. (13) is multiplied by λ, then m1 can be expressed as

m1 =
(
SSTSST − λ2I

)−1 (
SSTSw1 − λSw2

)
(15)

where I is the 3×3 identity matrix. Remark that the matrix inversion cannot be
carried out if the Lagrange multiplier λ is one of the eigenvalues of the matrix
SST . If the expressed m1 is substituted into Eq. (14), the equation from which
λ should be determined is obtained:

1
λ

AT (λ)B−T (λ)
(
Sw1 − SSTB−1(λ)A(λ)

)
= 0 (16)

where

A(λ) = SSTSw1 − λSw2 (17)
B(λ) = SSTSST − λ2I (18)

A(λ) and B(λ) are a vector and a matrix that have elements containing poly-
nomials of unknown variable λ. Such kind of vectors/matrices is called vec-
tor/matrix of polynomials in this study. The difficulty is that matrix B(λ) should
be inverted. This inversion can be written as a fraction of two matrices. B−1(λ)
can write as

B−1(λ) =
adj

(
SSTSST − λ2I

)
det (SSTSST − λ2I)

(19)
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where adj(.) denotes the adjoint1 of a matrix. It is trivial that det (B(λ)) is a
polynomial of λ, while adj (B(λ)) is a matrix of polynomials. This expression is
useful since the equation can be multiplied by the determinants of B(λ).

If one makes elementary modifications, Eq. (16) can be rewritten as

AT (λ)adjBT (λ)
detB(λ)

detB(λ)Sw1 − SST adjB(λ)A(λ)
detB(λ)

= 0. (20)

It is also trivial that Eq. (20) is true if the numerator equals zero If the
denominator, the determinant of matrix B(λ) equals zero, then the problem
cannot be solved; in this case, the 3D points in S are linearly dependent, the
points in S form a plane, or a line, or a single point instead of a real 3D object.
The Lagrange multiplier λ is calculated by solving the following polynomial:

AT (λ)adjBT (λ)
(
detB(λ)Sw1 − SST adjB(λ)A(λ)

)
= 0. (21)

This final polynomial is of degree 11: A(λ), and B(λ) have terms of degree
1, and 2, respectively. Therefore, adj(BT (λ)) is of degree 4, while that of
AT (λ)adj(BT (λ)) is 5. Since the size of B(λ) is 3×3, its determinant has degree
3 · 2 = 6. Other terms are of lower degree, the degree of the final polynomial
comes to 5 + 6 = 11.

The roots of the polynomial are 11 real/complex numbers, but only the real
values have to be considered. The obtained real values of λ should be substituted
into Eq. (15) and the obtained m1 and λ into Eq. (12); then the optimal solution
is the one minimizing the reprojection error given in Eq. (3).

We use Joe Huwaldt’s Java Matrix Tool2 to solve the 11-th order polynomial
equation. Our implementation uses the Jenkins and Traub root finder [15], and
we found that this algorithm is numerically very stable.

A very important remark is that in the case, when the coordinates in vec-
tors w1 and w2 are noise-free, it is possible that λ equals zero. Then the
camera vectors m1 and m2 can be computed as m1 =

(
SST

)−1
Sw1 and

m2 =
(
SST

)−1
Sw1.

Minimal Solution. For PnP algorithms, the minimal number of points for
the algorithms is also an important issue. The proposed optimization method is
based on reprojection error: each point adds two equations to the minimization.
The camera matrix consists of eight elements: six for camera pose and scales, two
for offset. The pose gives 3 Degrees of Freedom (DoFs), vertical and horizontal
scales are two DoFs, while the offset yields another two parameters. In summary,
the problem has 7 DoFs and they can be estimated from at least four 3D → 2D
point correspondences.

1 The transpose of the adjoint is also called the matrix of cofactors.
2 Available at http://thehuwaldtfamily.org/java/Packages/MathTools/MathTools.

html.

http://thehuwaldtfamily.org/java/Packages/MathTools/MathTools.html
http://thehuwaldtfamily.org/java/Packages/MathTools/MathTools.html
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4 Structure from Motion with Missing Data

We describe here how the previously discussed optimal calibration method can
be applied for the factorization (SfM) problem. Our method allows the points
to appear and/or disappear; thus, it can handle the missing data problem.

The proposed reconstruction method is an alternating least squares algorithm
to minimize the reprojection error defined as follows

∣∣∣∣
∣∣∣∣H �
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])∣∣∣∣
∣∣∣∣
2

F

, (22)

where M is the motion matrix consisting of the camera parameters in every
frame, and structure matrix S contains the 3D coordinates of the points (points
are located in the columns of matrix S). Operator ‘�’ denotes the so-called
Hadamard product3, and H is the mask matrix. If Hij is zero, then the jth

point in the ith frame is not visible. If Hij = 1, the point is visible.
Each cycle of the proposed methods is divided into the following main steps:

1. W-PnP-step. The aim of this step is to optimally estimate the motion
matrix M = [MT

1 ,MT
2 , . . . ,MT

F ]T , and translation vector t = [tT1 , tT2 , . . . , tTF ]T

if S is fixed, where the index denotes the frame number. It is trivial that the
estimation of these submatrices are independent from each other if the ele-
ments of the structure matrix S are fixed. The optimal solution is given by
W-PnP method defined in Sect. 3. Note that missing data should be skipped
in the estimation.

2. S-step. The goal of S-step is to compute the structure matrix S if the ele-
ments of the motion matrix and the translation vector are fixed4. The 3D
points represented by the columns of the structure matrix must be computed
independently (they are independent from each other). Missing data should
be considered during the estimation of course. It is a linear problem w.r.t.
the coordinates contained by structure matrix S; the optimal method can be
obtained using the Moore-Penrose pseudo-inverse as described in [28].

The proposed algorithm iterates the two steps until convergence as
overviewed in Algorithm 1. The convergence itself is guaranteed since both steps
decrease the non-negative reprojection error defined in Eq. 22. The proposed
factorization method requires initial values of the matrices. The key idea for ini-
tializing the parameters is that the factorization with missing data can be divided
into full matrix factorization of submatrices. If there is overlapping between sub-
matrices, then the computed motion and structure submatrices can be merged
if they are rotated and translated with the appropriate rotation matrices and
vectors, respectively. We use the method of Pernek et al. [24] for this purpose.

Comparison with Scaled Orthographic Factorization. The scaled ortho-
graphic camera calibration [20] is overviewed in Algorithm 2. The main idea of
3 A � B = C if cij = aij · bij .
4 This task is usually called triangulation. This term comes from stereo vision where

the camera centers and the 3D position of the point form a triangle.
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Algorithm 1. Summary of weak-perspective factorization.

M (0),t(0),S(0) ← Parameter Initialization
k ← 0
repeat

k ← k + 1
M (k),t(k) ← W-PnP-Step(H,W ,S(k−1))
S(k) ← S-Step(H,W ,M (k),t(k))

until convergence.

Algorithm 2. Skeleton of Scaled Orthographic Camera Calibration.

repeat
w3 ← Completion(R,t,S,scale)
R,t,scale ← Registration(S,w1,w2,w3)

until convergence.

the calibration is as follows: the measured 2D coordinates are completed with
a third coordinate that is simply calculated by reprojecting the spatial coor-
dinates with the current camera parameters. Then the registration-step refines
the camera parameters, and the completion and registration steps are repeated
until convergence. Hajder et al. [20] proved that this iteration converges to the
global optimum and this convergence is independent of the initial values of the
camera parameters. The completion is simple, easy to implement, however, it is
very costly as the calibration algorithm is iterative, closed-form solution is not
known.

An alternating-style SfM algorithm can also be formed using the scaled ortho-
graphic camera model as it is visualized in Algorithm 3. It has more steps than
the weak-perspective SfM method (Algorithm 1) as the completion of the 2D
coordinates is required after every other steps. However, the scaled orthographic
model can be speeded up by GPU as it is discuss later in this study. GPU-base
implementation for weak-perspective model is not possible as the polynomial
solver is too complex for a GPU thread.

Comparison with Affine Factorization. As it is discussed before, the esti-
mation of affine camera parameters is a linear problem. There are several meth-
ods [4,28] dealing with affine SfM factorization as well. They are relatively fast,
but the accuracy of those is lower compared to the scaled orthographic and weak-
perspective factorization as the affine camera model enables shearing (skew)
of the images that is not a realistic assumption. Remark that the skeleton of
the affine SfM methods is the same as that of weak-perspective one defined in
Algorithm 1.

Source Code. The proposed weak-perspective SfM algorithm is implemented
in Java and available in ResearchGate profile of the author.
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Algorithm 3. Summary of scaled orthographic factorization.

M (0),t(0),S(0) ← Parameter Initialization
H̃, W̃ (0), M̃ (0), t̃(0) ← Complete(H, W ,M (0),t(0), S(0))
k ← 0
repeat

k ← k + 1
M̃ (k) ← Registration(H̃,W̃ (k),S(k−1))
W̃ (k) ← Completion(W,H̃,M̃ (k),S(k−1))
S(k) ← S-Step(H̃,W̃ (k),M̃ (k))
W̃ (k) ← Completion(W,H̃,M̃ (k),S(k))

until
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5 Tests on Synthesized Data

Several experiments with synthetic data were carried out to study the properties
of the proposed methods. Three methods were compared: (i) SO Scaled Ortho-
graphic factorization [20], (ii) WP proposed Weak-Perspective factorization, and
(iii) AFF: Affine factorization [28].

We have examined three properties as follows.

1. Reconstruction error: The reconstructed 3D points are registered to the gen-
erated (ground truth) ones using the method of Arun et al. [1]. This regis-
tration error is called reconstruction error in the tests. The charts show the
improvement of the method (in percentage) w.r.t. the original Tomasi-Kanade
factorization [31].

2. Motion error: The row vectors of the obtained 3D motion matrix can be
registered to that of the generated (ground truth) motion matrix. This reg-
istration error is called motion error here. The charts show the improvement
in percentage similarly to visualization of the reconstruction error.

3. Time demand: The running time of each algorithm was measured. The given
values contain every step from the parameter initialization to the final recon-
struction.

To compare the affine method [28] listed above with the other two rival
algorithms, the computation of the metric 3D structure was carried out by the
classical weak-perspective Tomasi-Kanade factorization [31]. The 2F × 4 affine
motion was multiplied by the 4 × P affine structure matrix, and a full measure-
ment matrix was obtained. Then this measurement matrix was factorized by the
Tomasi-Kanade algorithm [31] with the Weinshall-Kanade [35] extension.

All of the rival methods were implemented in Java. The tests were run on an
Intel Core4Quad 2.33 GHz PC with 4 GByte memory.

5.1 Test Data Generation

Generation of Moving Feature Points. The input measurement matrix was
composed of 2D trajectories. These trajectories were generated in the following
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way: (i) Random three-dimensional coordinates were generated by a zero-mean
Gaussian random number generator with variance σ3D. (ii) The generated 3D
points were rotated by random angles. (iii) Points were projected using per-
spective projection.5 (iv) Noise was added to the projected coordinates. It was
generated by a zero-mean Gaussian random number generator as well; its vari-
ance was set to σ2D. (v) Finally, the measurement matrix W was composed of
the projected points. (vi) Motion and structure parameters were initialized as
described in Sect. 4. For each test case, 100 measurement matrices were gener-
ated and the results shown in this section were calculated as the average of the
100 independent executions.

Generation of Mask Matrix. The mask generator algorithm has three param-
eters: (i) P : Number of the visible points in each frame, (ii) F : Number of the
frames. (iii) O: offset between two neighboring frames. The structure of the mask
matrix is the same as in our BMVC 2008 paper [24].

5.2 Test Evaluation

General Remarks. The charts basically show that the SO algorithm outper-
forms the other methods in every test case as it is expected. This is evident since
the scaled orthographic projection model is the closest one to real perspectivity.
This is true for the reconstruction error as well as the motion error. The sec-
ond place in accuracy is given to the proposed weak-perspective (WP) method
which is always better than the affine one, but slightly less accurate than the
SO method.

Examining the charts of time demand, it is clear that the fastest method is
the affine (AFF) one; however, the affine algorithm can be very slow as discussed
during real tests later if there is a huge amount of input data. It is because a full
factorization [31] must be applied after the affine factorization to obtain metric
reconstruction, and this can be very slow due to the Singular Value Decompo-
sition. This SVD-step can be faster if only the three most dominant singular
values and vectors are computed [17]. Unfortunately, the Java Matrix Package
(JAMA) which we used in our implementation does not contain this feature. As
shown in [4], there are several methods which implement affine reconstruction.
Pernek et al. have shown earlier [24] that the fastest method of those is the so-
called Damped-Newton algorithm, which is significantly faster than our affine
implementation.

The main conclusion of the tests is that there is a tradeoff between accuracy
and time demand. The SO factorization is the most accurate but slowest one,
while the affine is fast but less accurate. The proposed WP-SfM algorithm is very
close to SO and AFF algorithms in accuracy and running time, respectively.

5 We tried the orthographic projection model with/without scale as well, the results
had similar characteristics. Only the fully perspective test generation is contained
in this paper due to the page limit.
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Fig. 2. Improvement of reconstruction and motion errors (left charts) and time demand
(right) w.r.t. 2D noise [8].

Error versus Noise (Fig. 2). The methods were run with gradually increasing
noise level. The reconstruction error increases approximately in a linear way for
all the methods. Therefore, the improvement is approximately the same for all
noise levels as the error of the reference factorization [31] increases with regard
to noise as well. The test sequence consisted of 20 frames, and P = 100 was set.
The missing data ratio was 30.6%. The noise level was calculated as 100σ2D/σ3D.

The test indicated that the SO algorithm outpowered the rival ones, and the
WP method was better than the affine one as expected; however, SO needs the
most time to finish its execution, thus the fastest method is the affine one.

Fig. 3. Improvement of reconstruction and motion errors (top charts) and time demand
(bottom left) w.r.t. number of points. Bottom right chart shows the ratio of missing
data [8].

Error versus Number of Points (Fig. 3). P increased from 40 to 180 (the
missing data rate decreased from approx. 80% to 20%). The noise level was 5%,
and the sequence consisted of 100 frames. The conclusion was similar to the
previous test case: the most accurate model was given by the SO algorithm,
the second one was from the WP method. The difference was not significant in
either accuracy or execution time.
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Fig. 4. Improvement of reconstruction and motion errors (top charts) and time demand
(bottom left) w.r.t. number of frames. Bottom right chart show the ratio of missing
data [8].

Error versus Number of Frames (Fig. 4). F increased from 10 to 46. The
corresponding missing data ratio increased from 10% to 80%. The noise level
was 5%, and P = 100. In each test case, the most accurate algorithm was the
one consisting of the scaled orthographic camera model, but this was also the
slowest one as expected. The accuracy of the weak-perspective factorization is
better than the affine one after both structure and motion reconstruction.

5.3 Parameter Initialization for Bundle Adjustment

As discussed above, the affine, weak-perspective and scaled orthographic SfM
method can estimate the 3D structure of the tracked points. In this chapter,
we are examining how obtained 3D points can be used as initial parameters
for perspective reconstruction. The 3D coordinates are perspectively projected.
The applied perspective reconstruction itself is the SBA implementation6 of the
well-known bundle adjustment [2] method.

When the structure matrices have already been computed, the estimation of
the 3 × 4 projection matrices is a camera calibration problem. In our test, the
normalized Direct Linear Transformation (DLT) algorithm [9], also known as the
‘six-point method’, was applied. The projection matrix was then decomposed
into camera intrinsic and extrinsic parameters.

We compared the initial parameters of the three compared method. BA can-
not guarantee that global optimum is reached through estimation; it is interesting
that BA after the weak-perspective, scaled orthographic and affine parameter ini-
tialization usually gives the same results. The time demand of the two methods
6 http://users.ics.forth.gr/∼lourakis/sba/.

http://users.ics.forth.gr/~lourakis/sba/
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differs a bit: the weak-perspective (WP) and scaled orthographic (SO) methods
usually help BA to yield faster convergence than affine (AFF) parameterization.
We also applied the classical Tomasi-Kanade (TK) algorithm [31] for parameter
initialization, and that yielded the slowest BA convergence. Moreover, its results
were usually less accurate than those of the other three algorithms (AFF, SO,
WP); therefore, it seems that BA usually converges to local minima if the initial
parameters are obtained by Tomasi-Kanade factorization. Time demand (msec)
in our test sequences are listed in Table 1. There is not significant difference
between the case when the scaled orthographic or proposed weak-perspective
factorization is applied in order to compute initial parameters for perspective
BA. Therefore the overall running time of WP method is smaller as the WP
factorization is faster than the SO one.

Table 1. Time demand of bundle adjustment. There is not significant difference
between the scaled orthographic (SO) and weak-perspective (WP) values [8].

Test sequence TK WP SO Aff

Versus noise 1628.35 986.12 989.805 1033.27

Versus frames 1649.63 598.93 582.22 693.77

Versus points 985.65 452.525 444.7 450.4375

The conclusion of the parameter initialization test is that the weak-
perspective algorithm gives the fastest results since the time demand for fac-
torization itself is faster than that of rival methods, while the speed of the BA
algorithm is approximately the same in the case of WP and SO parameter
initialization; the BA method usually converges to the same 3D reconstructions.

6 Rapid Structure from Motion by GPU

The aim of this section is to show that a rapid implementation of the scaled
orthographics SfM can significantly reduce the time demand of the method.
Two improvements are introduced: the used linear algorithm methods can be
accelerated, and the substeps can be parallelized.

6.1 Faster Matrix Computations

General linear algebra methods in common mathematical software packages
operate on arbitrary matrices. By taking advantage of the fact that the dimen-
sions of the matrices in our SfM algorithm are known, the general matrix oper-
ations can be accelerated as follows.

Pseudoinverse. In our original implementation, the SVD algorithm applied in
the M-step is performed using Java Matrix Package (JAMA)7. The pseudoinverse
7 http://math.nist.gov/javanumerics/jama/.

http://math.nist.gov/javanumerics/jama/
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is also calculated using SVD. However, this is not the fastest way. In the S-step,
the pseudoinverse of a 3F̃ × 3 matrix M̃ is computed, where F̃ is the number
of frames in which the processed point is visible. It is well known [3] that the
pseudoinverse can be written as

M̃† = (M̃T M̃)−1M̃T . (23)

The size of matrix M̃T M̃ is 3 × 3. Its inverse can be written with the help
of the adjoint matrix and the determinant. Therefore, we have implemented
a special pseudoinverse algorithm which computes the inverse of matrices with
three columns. This simplification reduces the computational load of the method.
According to the tests we executed, our special pseudoinverse implementation is
15–25 times faster than the original one.

SVD. The SVD implementations in linear algebra software libraries such as
JAMA contain iterative solutions [3], because the size of the matrix to be pro-
cessed is arbitrary. In this SfM algorithm, the SVD is required only for solving
the registration problem, and the matrix to be decomposed is always a 3 × 3
one. The SVD itself has three subproblems: (i) For the calculation of the sin-
gular values, the eigenvalues of a 3 × 3 matrix are required. This calculation
is equivalent to finding the three real roots of a 3-degree polynomial. (ii) The
calculation of the left and/or right singular vectors are given by determining the
null-vectors corresponding to the singular values. In order to solve this homoge-
neous linear problem, we have used the well-known Gauss-Newton elimination.
(iii) If the left/right singular vectors are known, the vectors on the other side are
obtained using simple matrix multiplications with normalization. The computa-
tional time of our 3×3 SVD implementation is approximately half of that of the
original one.

6.2 GPU Implementation

The architecture of modern GPUs offers very high computing power to certain
algorithms. The main requirement is that the execution be split into branches
which are independent and can be executed concurrently. Although our algo-
rithm is iterative and each step must be fully completed before starting the
next one, the individual steps themselves are suitable for parallelization and are
complex enough for the implementation to benefit from the GPU architecture.

We used OpenCL, a standard for general purpose programming on various
devices; it is supported by the modern video card brands of both AMD and
NVIDIA. It defines a C-like language for creating so called kernels, functions
which are to be executed on the device, and an API for data transfer and exe-
cution control. The host code uses this API to access the device, send the input
data to the device memory, initiate execution of kernels, and finally read the
result data back to the main memory.

After the parameter initialization and completion steps, the GPU implemen-
tation of the algorithm transfers all four matrices, M , t, W , and S to the GPU
memory. The M-step, the S-step, the Update, and the error computation kernels
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are executed appropriately, as required by the algorithm. As all four components
run on the device, we can avoid most data transfer during the iteration itself.
The result is read back to the main memory only when the algorithm terminates.

Parallelism. The key idea in our GPU-based implementation is that most parts
of the algorithms can be run in parallel.

S-step. Computation of the 3D coordinates are performed for each point inde-
pendently, so the S-step translates to the GPU architecture in a straightforward
manner. Since the number of points is generally high, and this step requires non-
trivial calculations, including a pseudoinverse, we achieved great GPU utilization
and performance improvement compared to the traditional implementation.

M-step. The M-step can be executed for each frame concurrently. The number
of frames is usually lower than the number of points, but 3D registration is even
more computationally intensive than the 3D point estimation of the S-step. For
optimal parallel performance, we avoided allocations of large temporary data
structures and handled missing data in-place.

Update Step. As it is shown in our previous paper [20], every single projection
can be calculated independently.

Computation of Reprojection Error. Although the error of each measured
point can be computed independently, summation does not translate to a parallel
architecture as it is. In our implementation of this step we first calculate the
entire error matrix, then execute a recursive parallel reduction algorithm to
produce the sum of more and more elements until the entire matrix is processed.
The main benefit of such an implementation is to avoid reading back the matrices
to the CPU for the error calculation, as the cost of data transfer is very high.

7 Tests of Time Demand on Synthetic Data

Several experiments with synthetic data have been carried out to study the
properties of the reconstruction methods. We focus on the time demand of our
following three implementations. CPU: Straightforward single-threaded imple-
mentation running on an Intel Core4Quad 2.33 GHz CPU with 4 Gbyte memory.
CPU4TH: The multi-threaded version of the same code using the same CPU.
GPU256TH: The OpenCL port of the multi-threaded version running on the
NVIDIA GTX 285 GPU with only 256 parallel threads.

All three implementations include the faster matrix operations described in
Sect. 6.1.

We have tested both the offline and the incremental version of the SfM
algorithm.

For the synthetic tests, we have generated the input measurement matrices
as follows. (i) A random 3D point cloud has been generated. (ii) Then these
points have been rotated randomly and projected into the hypothetic image
plane using weak-perspective projection. (iii) Random Gaussian noise has been
added to the projections. (iv) Finally, the coordinates have been scaled to the
interval [0, 1000].
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7.1 Offline SfM

The plots in Fig. 5 show the execution times of the three implementations as a
function of the number of points, the number of frames, and the missing data
ratio. One of these test parameters was incremented for each graph, the other
two were set to a fix value. This value was 1000 for the number of points, 50
for the number of frames, and 50% for the missing data ratio. The termination
threshold δ of the iteration was set to 10−5 pixel.

Fig. 5. Time demand and iteration numbers of implementations w.r.t. number of points
(top), number of frames (middle), missing data ratio (bottom).

The algorithm is approximately linear in the number of points as it is shown
by the first plot. When the number of frames increases (middle chart), the higher
computational demand of the steps themselves is balanced by the lower number
of iterations required. This can be explained by the initial parameter estimates
being of better quality. The bottom graph shows that the missing data ratio
has little effect on execution time until about 60%. Then the algorithm starts
requiring an increasing number of iterations, and this results in a sharp rise of
execution time, even if the less points are visible, the faster each step becomes,
since they only use the visible points.

We have performed an additional test with 20000 points, and 500 frames to
compare our method to the GPU-powered BA algorithm. The total execution
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time was 3.8 s. This is less than the time demand of a single iteration of the
GPU-based BA. The total execution time of BA for this huge amount of data is
approximately one day as it is analyzed in [6].

7.2 Incremental SfM

For brevity, and since the incremental variant is aimed for real-time conditions,
we only present the results for the GPU version. (The general relationship
between the performance of the three implementations is the same as in the
offline case.)

In our tests, we used the following parameters by default: 1000 points, 50
frames, 50% missing data ratio, 2.5% noise, an error threshold of δ = 10−3 pixel,
and refinement every fifth frame (refinement period of 5).

Figure 6 displays the performance of the algorithm in frames per second
(FPS) and the final reprojection error with respect to noise level. The latter is the
root mean square (RMS) of the error values. We see that the algorithm becomes
faster as the noise increases because less iterations are required altogether. We
cannot explain this behavior, but we can clearly state that the reconstruction is
real-time. As expected, the error increases with noise.

Fig. 6. FPS and final error w.r.t. noise.

In accordance with our expectations, the algorithm becomes slower as the
number of points is increased (Fig. 7). The final RMS error is steadily between
1 and 1.3 pixels.

Fig. 7. FPS and final error w.r.t. number of points.

As we increased the total number of images (Fig. 8), the speed of processing
increased at first, then it leveled off at around 65 FPS (with error values stay-
ingin the 1–1.3 pixel range). This promising result indicates that, although the



146 L. Hajder

iterative refinement struggles at the start when few images are available, it can
sustain high performance in the long-term.

Fig. 8. FPS and final error w.r.t. number of frames.

The missing data chart (Fig. 9) confirms the idea that the more data are
available, the less iterations are required to achieve the error threshold. We can
even observe a similar jump at 60% missing data as we did in Fig. 5. Also note
that for this test sequence we set the number of points to 2500 instead of the
default 1000 in order to accommodate to higher ratios of missing data. The error
plot shows that missing data ratio has little effect on the final error.

Fig. 9. FPS and final error w.r.t. missing data ratio.

Finally, in Fig. 10, we demonstrate that we can reduce the frequency of itera-
tive refinement during the algorithm to achieve higher throughput without sac-
rificing accuracy. The RMS reprojection error with respect to the frame number
is visualized in Fig. 11. It is clear that the refinement significantly reduces the
final error especially when the reconstruction is computed from less frames.

Fig. 10. FPS (left) and iteration number (right) w.r.t. refinement period.
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Fig. 11. Error during incremental reconstruction.

8 Tests on Real Data

We tested the proposed algorithm on several real sequences as well.

‘Dino’ sequence. The ‘Dino’ sequence, downloaded from the web page of the
Oxford University8, consisted of 36 frames and 319 tracked points. The mea-
surement matrix had a missing data ratio of 77%. Input images are visualized
on the left images of Fig. 12. The reconstructed 3D points were computed by the
proposed SfM method. The time demand of that was 26 seconds (the affine and
scaled orthographic SfM methods have computed the reconstruction in 6 and
34 s, respectively). The results are plotted in the right part of Fig. 12.

Fig. 12. Results on ‘Dino’ sequence: Left: 2 out of 36 original image and (right) recon-
structed point cloud captured from three views [8].

Another interesting examination is to compare the quality of the recon-
structed 3D models; the points themselves seem very similar, but the camera
positions differs significantly. We compared those after factorization by the orig-
inal Tomasi-Kanade method to affine, weak-perspective and scaled orthographic
improvement as visualized in Fig. 13. The quality of the original factorization
method (top-left image) is very erroneous since the cameras should be located
at regular locations of a circle. The improvements are significantly better. As
expected, the scaled orthographic reconstruction (bottom-right image) serves

8 http://www.robots.ox.ac.uk/∼amb/.

http://www.robots.ox.ac.uk/~amb/
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Fig. 13. Reconstructed ‘Dino’ model with estimated cameras. Top-left: Original
Tomasi-Kanade factorization. Top-right: Affine factorization. Bottom-left: Weak-
perspective factorization (proposed method). Bottom-right: Scaled orthographic fac-
torization. The cameras should be uniformly located around the estimated point cloud
of the plastic dinosaur. The difference between weak-perspective and scaled ortho-
graphic camera parameters is not significant [8].

better quality, the proposed weak-perspective (bottom-left) is slightly worse,
but it serves acceptable results; the affine refinement (top-right plot) is also
satisfactory.

The visualization of the camera optical centers for non-perspective cameras
was not trivial. The pose of the cameras were obtained by the factorizations, but
the focal length could not be estimated. For this reason, the focal length was set
manually.

‘Cat’ Sequence. We tested the proposed algorithm on our ‘Cat’ sequence.
The cat statuette was rotated on a table and 92 photos were taken by a com-
mon commercial digital camera. The regions of the statuette in the images were
automatically determined.

Feature points were detected using the widely-used KLT [32] algorithm, and
the points were tracked by a correlation-based template matching method. A
features point was labeled as missing if the tracker could not find its location in
the next image, or the location was not inside the automatically detected region
of the object. The measurement matrix of the sequence consisted of 2290 points
and 92 frames. The missing data ratio was 82%, that is very high.
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Fig. 14. Two images (left) of sequence ‘Cat’ and the reconstructed points from three
views (right). [8].

The 3D reconstructed points are visualized on the right plots of Fig. 14. We
tested every possible method and compared the time demand of the methods:
the running times of the affine, scaled orthographic, and weak-perspective fac-
torization were 484, 199, and 99 s, respectively.

8.1 GPU-Based Tests on Real Objects

The offline and incremental implementation are compared in this test on two
real sequences ‘Dino’ and ‘Cat’.

Offline SfM. We have tested the implementations on two real sequences men-
tioned above. They have produced identical results, and as expected, the parallel
ones were significantly faster than the serial one.

For these tests we used the termination condition δ = 10−3.

‘Dino’ Sequence. The input images and the reconstructed 3D points are visu-
alized in Fig. 12. The time demands of the CPU, CPU4TH, and GPU256TH
implementations were 5.4, 2.4, and 1.3 s, respectively.

‘Cat’ Sequence. We have tested the implementations on our ‘Cat’ sequence
pictured in Fig. 14 as well. The time demands of the CPU, CPU4TH, and
GPU256TH implementations were 14.3, 4.6, and 1.2 s, respectively. The decrease
of the RMS reprojection error is pictured in Fig. 15. It is monotonic, as expected,
since each substep of the algorithm is optimal.

Fig. 15. Error during refinement of the ‘Cat’ sequence.
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8.2 Incremental vs. Offline SfM

Table 2 compares the performance of the incremental and the offline variants of
our reconstruction algorithm for the two real sequences. The incremental variant
did not reach real-time speed, due to the high missing data ratio; this result is in
accordance with the synthetic tests (see Fig. 9). By increasing the termination
threshold from 10−3 to 10−2 (Table 3), both sequences could be processed at
over 15 FPS, the speed of conventional web cameras. The cost of this change is
quite small with regards to the final reprojection error (for the ‘Cat’ sequence,
the error increased from 3 to 3.5 pixels; and from 1.9 to 2.4 pixels for the ‘Dino’
sequence).

Table 2. Time demand on real sequences (δ = 10−3).

Sequence FPS (incr.) Total (incr.) Total (offl.)

Dino 11.2 2.7 s 1.3 s

Cat 3.7 23.3 s 1.2 s

Table 3. Time demand on real sequences (δ = 10−2).

Sequence FPS (incr.) Total (incr.) Total (offl.)

Dino 25.9 1.2 s 251ms

Cat 16.5 5.2 s 482ms

Still, the offline algorithm, having more data available to it, performs signif-
icantly better. These results suggest that the incremental version should only
be used when it is important to obtain partial reconstruction results during the
process.

9 Conclusion

We have presented the optimal calibration algorithm for the weak-perspective
camera model here. The proposed method minimizes the reprojection error of
feature points in the least squares sense. The solution is given by a closed-form
formula. We have also proposed a SfM algorithm; it is an iterative one, and every
iteration consists of two optimal steps: (i) The structure matrix computation is
a linear problem, therefore it can be optimally estimated in the least squares
sense, while (ii) the camera parameters are obtained by the novel optimal weak-
perspective camera calibration method. The introduced SfM approach can also
cope with the problem of missing feature points.

The proposed weak-perspective and scaled orthographic SfM algorithms were
compared to the affine one. It was shown that weak-perspective SfM is signif-
icantly more accurate than the affine one, and usually faster than the scaled
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orthographic SfM algorithm due to the optimal weak-perspective calibration.
We successfully applied the novel method to compute the initial parameters for
bundle adjustment-type 3D perspective reconstruction. The (offline) Java imple-
mentation of our weak-perspective SfM algorithm can be downloaded from the
ResearchGate profile of the author.

Finally, the GPU-based implementation of scaled orthographic SfM is over-
viewed, and both the offline and incremental variants are compared on real test
sequences.
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Abstract. Rolling Shutter cameras are predominant in the tablet and
smart-phone market due to their low cost and small size. However, these
cameras require specific geometric models when either the camera or the
scene is in motion to account for the sequential exposure of the differ-
ent lines of the image. This paper proposes to improve a state-of-the-art
model for RS cameras through the use of Non Uniformly Time-Sampled
B-splines. This allows to interpolate the pose of the camera while taking
into account the varying dynamic of its motion, using higher density of
control points where needed while keeping a low number of control points
where the motion is smooth. Two methods are proposed to determine
adequate distributions for the control points, using either an IMU sensor
or an iterative reprojection error minimization. The non-uniform camera
model is integrated into a Bundle Adjustment optimization which is able
to converge even from a poor initial estimate. A routine of spatiotempo-
ral optimization is presented in order to optimize both the spatial and
temporal positions of the control points. Results on synthetic and real
datasets are shown to prove the concepts and future works are introduced
that should lead to the integration of our model in a SLAM algorithm.

Keywords: Rolling Shutter · Camera geometric model ·
Bundle adjustment · Simultaneous Localization and Mapping ·
B-splines interpolation

1 Introduction

In Augmented Reality applications for mobile devices (smartphones and tablets),
the real-time localization of the device camera and the 3D modeling of the envi-
ronment are used to integrate virtual elements onto the images of the real envi-
ronment. This task is usually performed by algorithms of Structure From Motion
(SFM: [1]), and Simultaneous Localization and Mapping (SLAM: MonoSLAM
[2], PTAM [3] OrbSLAM [4]). Most existing implementations assume that the
cameras are using a Global Shutter (GS), for which all the lines of the image
are exposed at the same time, ie. if the integration time is neglected, the whole
image is the projection of the scene using a single pose for the camera.
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However, more than 90% of mobile devices are equipped with Rolling Shutter
(RS) cameras because of their lower cost and smaller size compared with the
classic GS cameras. The advantages of RS cameras come with some drawbacks;
by the way they are designed, they cause image distortions when observing a
dynamic scene or when the camera is moving. In these sensors, all the lines of
the image are exposed and transferred sequentially at different times.

More complex geometric models are thus required for RS cameras, to account
for the varying pose of the camera. Previous RS Camera model presented in [5,6]
are achieving camera pose interpolation using B-splines controlled by Control
Points (CP) that are sampled in time with a constant interval. This kind of
temporal distribution is referred to as an Uniform Time Distribution (UTD) in
the following.

This paper extends these models by using an adaptive Non Uniform Time
Distribution (NUTD) for the CP of the B-spline as proposed in [7]. This allows
to globally reduce the number of CP required to model a given trajectory with
the same accuracy compared with the UTD. The NUTD B-Splines are detailed,
alongside a Bundle Adjustment (BA) using this model. The NUTD of the CP
allows to optimize the timestamps of the CP, and we demonstrate how it can be
used to model trajectories on real datasets.

The paper firstly presents existing SLAM algorithms and exhibits problems
arising from the use of images captured with RS cameras. It then presents the
theoretical framework used for the modeling of the RS cameras. First, the cumu-
lative B-splines are introduced to allow the interpolation of 6-dof camera pose in
continuous time. Second, the pinhole camera model using interpolated poses is
derived. Then, the iterative minimization used in the Perspective n-Points and
bundle adjustment algorithm is explained. Two methods are briefly exposed to
efficiently generate the CP, using either an IMU sensor or multiple iterations
of reprojection error minimization. A spatiotemporal optimization approach is
then proposed to determine adequate NUTD for the CP. Finally, the proposed
PnP and BA implementations using the NUTD B-Splines models are evaluated
on synthetic datasets to prove the concept, then the spatiotemporal optimization
is tested on real datasets. Future works are then discussed.

2 Related Work for SLAM

2.1 Global Shutter

A monocular visual SLAM algorithm recovers the position and orientation of
a mobile camera and dynamically constructs a model of the environment in
real-time. In the Augmented Reality context, the camera parameters are used
to synthesize images of virtual elements that are rendered coherently over the
acquired image, using the reconstructed model of the environment.

Early real-time methods used to solve the SLAM problem in the literature
were based on Extended Kalman Filter (EKF) [2,8,9]. The simplicity of this
method and it’s computing efficiency for small size environment models has
made it the most used SLAM method for the past decade.
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Other robust and real-time methods based on local BA like PTAM [3] have
also been proposed. They minimize the reprojection error over a subset of previ-
ously acquired images, called keyframes [4,10], or over a sliding window of frames
[11]. They provide improved robustness thanks to the modeling of outliers, and
[12] proved the superiority of these BA-based methods over filtering one.

2.2 Rolling Shutter

Using a SLAM method designed for GS camera model with RS camera produces
deviations of the estimated trajectory and reconstructed 3D points. These devi-
ations increase with the velocity of the camera. One of the first use of a RS
camera model in the SLAM context was the adaptation of PTAM for smart-
phone [13]. They estimated the angular velocity of the camera at the keyframe
using keypoints tracked between the previous and the next frame. This angular
velocity was then used to correct the measurements of the points in the image
using a first order approximation so they can be used as if they where obtained
by a GS camera.

[14] initially used a similar method, and proposed in [15] a BA using a RS
camera model. To estimate the varying camera pose inside a frame, they inter-
polated independently the rotations (using SLERP) and the translations (using
linear interpolation).

[16] also used B-splines to have a continuous time representation. In their
work, they interpolate rotations and translations by two independent B-splines.
Their Cayley-Gibbs-Rodriguez formulation used for the poses had two major
issues according to [5]:

– The used Rodrigues parameterization has a singularity for the rotation at π
radians.

– The interpolation in this space does not represent the minimum distance
for the rotation group hence the generated trajectories can correspond to
unrealistic motions.

To address these issues, [5] proposed to use a continuous time trajectory
formulation using cumulative B-splines. In precedent works [7], we have shown
that the UTD of the B-Splines control poses (CP) leads either to a smoothing of
the trajectory or to redundancies. We proposed to use a NUTD of the CP and
methods to dynamically generate CP.

This paper is an extension of [7], describing a NUTD B-Spline model suitable
for a BA algorithm and proposing a spatiotemporal optimization of the CP. A
brief summary of used notations and scientific context is given in the next section.

3 Notations and Scientific Context

In this article, the 6 degrees of freedom associated to the extrinsic parameters of
the camera are expressed by a matrix 4× 4 corresponding to the transformation
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from the camera coordinate frame to the world coordinate frame. This matrix
Tw ∈ SE3 is parameterized by a translation vector a and a rotation matrix R:

Tw =
(

R a
0T 1

)
,Tw ∈ SE3,R ∈ SO3,a ∈ R

3 (1)

A rigid transformation in the Lie algebra se(3) can be expressed by a 6D
vector ξ = [w,a]T ∈ se(3) where w = [ω0, ω1, ω2]T is the rotation component.
Its 4 × 4 associated matrix can be obtained by applying the wedge operator [·]∧
on ξ knowing that [w]× is the skew-symmetric matrix 3 × 3 of w:

Ω = [ξ]∧ =
(

[w]× a
0T 1

)
, [w]× =

⎛
⎝ 0 −ω2 ω1

ω2 0 −ω0

−ω1 ω0 0

⎞
⎠ (2)

The logarithmic mapping projects a matrix from SE3 to its tangent space
se(3) defined locally Euclidean, where compositions of rigid transformations are
obtained by additions. The exponential mapping, being the inverse operation of
the exponential map, projects back a 6D vector from the tangent space se(3)
towards SE(3). These two applications can be resumed (when the magnitude of
the angle of rotation is lower than π):

Tw = exp(Ω)
Ω = log(Tw) (3)

3.1 Cumulative B-Splines

As a RS camera exposes its lines at different instants, an estimate of the camera
pose for each line is needed to project the 3D points of the observed scene onto
the image. This estimate can be obtained with continuous-time modeling of the
camera trajectory. To interpolate the camera pose associated with one particu-
lar image line, multiple timestamped CP, locally controlling the trajectory, are
required, the first of these CP being timestamped at time ti. The correspond-
ing rigid transformations matrices are defined in the world coordinate system
and abbreviated Tw,i. Various interpolation methods can be considered (linear,
B-Spline, Bézier) according to the final application.

A standard B-spline is defined by constant polynomial basis functions Bi,k

(k − 1 being the degree of the used polynomial) and variable CP pi. This def-
inition is not suitable for the non euclidean space of rigid body transformation
SE(3) where the elements are composed by matrix multiplication.

In [5], the authors suggest the use of the cumulative form of the B-Splines
because of their suitability for the interpolation on the manifold SE(3) [17]. They
chose cubic B-Splines (k = 4) for the interpolation to ensure a C2 continuity of
the trajectory, allowing interpolation of velocities and accelerations.

The cumulative basis functions B̃(t)j used in cubic cumulative B-Splines are
expressed by the jth component of the vector B̃(t), starting at index j = 0:
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B̃(t) =
1
6

⎛
⎜⎜⎝

6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
u(t)
u(t)2

u(t)3

⎞
⎟⎟⎠ (4)

where u(t) = t − ti+1
Δt an intermediate time representation such as 0 ≤ u(t) < 1

between the two CP Tw,i+1 and Tw,i+2 with t ∈ [ti+1, ti+2]. Δt defines the time
interval between the CP, which is considered constant for UTD B-Splines.

Interpolation on the SE3 manifold is defined by a composition of CP varia-
tions Ωj−1,j = log(Tw,j−1

−1Tw,j) weighted by basis functions B̃(t)j applied to
a reference pose Tw,i. Thus, in the case of cumulative cubic B-Spline (k = 4), the
interpolation of the pose Tw(t) between two CP Tw,i+1 and Tw,i+2 requires the
four neighbor CP Tw,i to Tw,i+3. The interpolation function is then expressed
as:

Tw(t) = Tw,i

i+k−1∏
j=i+1

exp(B̃(t)j−iΩj−1,j) (5)

3.2 Non Uniform Time Distribution for B-Splines

This document is an extension of [7], where we suggested to use a NUTD of the
CP in order to adjust the distribution to the camera trajectory dynamic. This
enables a more efficient modeling of the trajectory, both in terms of computa-
tional cost and memory usage.

Using NUTD, the time interval Δt between two CP is not constant any-
more. Instead, the time interval Δti−1,i is defined as the difference of timestamps
between the two CP Tw,i−1 and Tw,i.

B-Splines whose CP are non-uniformly sampled in time are named NUTD B-
Splines in the remainder of this document. For such B-Splines, the basis functions
are defined by a recurrence formula slightly different from the standard (UTD)
case [18], see [17]:

Bi,k(t) =
t − ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t

ti+k − ti+1
Bi+1,k−1(t) (6)

With the stopping condition defined by:

Bi,1(t) =
{

1 if ti < t < ti+1

0 otherwise (7)

The recurrence formula allows to compute the basis functions for different
degrees. By developing the formula as in [19] or using Toeplitz matrix [20],
the basis function can be expressed as a matrix product as in [5] for cubic B-
Spline. Unlike the UTD case, the coefficient matrix used in the expression of basis
functions is dependent on the CP timestamps. For cubic B-Splines, four CP Tw,i

to Tw,i+3 and six CP timestamps Tw,i to Tw,i+5 are required to interpolate at
a time t within [ti+2; ti+3].



Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 159

The intermediate time representation between the two CP of the considered
interpolated section is henceforth given by:

u(t) =
t − ti+2

ti+3 − ti+2
(8)

The matrix form for the NUTD basis functions are thus expressed by:

B(t) = M

⎛
⎜⎜⎝

1
u(t)
u(t)2

u(t)3

⎞
⎟⎟⎠ (9)

Details on coefficient matrix M are given in [19], it is however substantial to
note that M is now relative to the 6 CP timestamps ti to ti+5.

C being the cumulative coefficient matrix from M, the cumulative version of
the basis functions are now given by:

Ci,j =
k∑

l=i

Ml,j , B̃(t) = C

⎛
⎜⎜⎝

1
u(t)
u(t)2

u(t)3

⎞
⎟⎟⎠ (10)
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Fig. 1. The evolution of the value of the k = 4 cumulative NUTD basis functions
B̃0..k(t)(up) and non cumulative B0..k(t)(down) w.r.t time. Each basis functions is
associated to a color (red, green, blue, cyan), showing the influence of a CP varia-
tion(up) or a CP(down) on the interpolated trajectory over time. (Color figure online)
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The Fig. 1 shows the value of the 4 NUTD cumulative and non cumulative
basis over time. Unlike the UTD case, the basis functions are different for each
interpolation section because of the varying time interval between the CP.

The cumulative coefficient matrix C is invariant with respect to the interpo-
lation time t. For clarity, we redefine Ωj := Ωj−1,j . The derivative of the basis
functions with respect to t can be retrieved in the same way as UTD B-Splines:

˙̃B(t) =
1

Δti+2,i+3
C

⎡
⎢⎢⎣

0
1
2u
3u2

⎤
⎥⎥⎦ , ¨̃B(t) =

1
Δt2i+2,i+3

C

⎡
⎢⎢⎣

0
0
2
6u

⎤
⎥⎥⎦ (11)

The first and second derivatives of the interpolated trajectory are then
expressed by:

Ṫw(t) = Tw,i(Ȧ1A2A3 + A1Ȧ2A3 + A1A2Ȧ3) (12)

T̈w(t) = Tw,i

(
Ä1A2A3 + A1A2Ä3 + A1A2Ä3)+

2 ∗ (Ȧ1Ȧ2A3 + Ȧ1A2Ȧ3 + A1Ȧ2Ȧ3)

)
(13)

Aj = exp(B̃(t)jΩj+i) (14)

Ȧj = Aj
˙̃B(t)jΩj+i (15)

Äj = Ȧj
˙̃B(t)jΩj+i + Aj

¨̃B(t)jΩj+i (16)

4 Rolling Shutter Camera Model

An image from a RS camera can be seen as the concatenation of one dimensional
images (rows) exposed at different times as seen in the Fig. 2.

For a static scene and camera, there is no geometric difference between the
GS and RS cameras. But when there is a relative motion between the camera
and the scene, each line is a projection from a different camera viewpoint. While
the camera pose T ∈ SE3 is common to all the pixels in a GS image, it varies
as T(t) for each individual line in the RS case.

The pinhole camera perspective projection model is derived below. Let P be
a 3D point defined in homogeneous coordinates in the world coordinate system
w. Let Tc,w = T−1

w,c = T−1
w be the transformation matrix from world w to

camera c coordinate frame. Let K be the camera matrix containing the intrinsic
parameters and π(.) be the perspective projection (mapping from P

2 to R
2). The

pinhole model projects P onto the image plane to p =
[
pu pv

]T by:

p =
[
pu

pv

]
:= π([K|0]Tc,wP) (17)

To model the varying pose, Tc,w is parameterized by t as Tc,w(t). The spline
being defined by Eq. (5) in the spline coordinate frame s (attached to the IMU for
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Fig. 2. RS cameras expose the image lines sequentially, thus if the first line is exposed
at instant t0, then the nth line is exposed at t0 + n.tr with tr the readout time of a
line. The time taken by the camera to fully expose an image is called the readout time
tm [21]. Image from [7].

instance) different from c, a (constant over time) transformation Tc,s is required
to obtain Tc,w(t):

Tc,w(t) = Tc,sTs,w(t) (18)

The projection is obtained by:

p(t) =
[
pu(t)
pv(t)

]
:= π([K|0]Tc,w(t)P) = ω(P,Tc,w(t)) (19)

This model does not yet represent the fact that at a given time t corresponds a
single line exposure. So the projection

[
pu(tj) pv(tj)

]T of P at time t = tj will
actually be obtained only if the line pv(tj) is exposed at time tj .

[5] expressed the line exposed at a time t as a function of s being the frame
start time, e being the end frame time, and h being the height of the image in
pixels by:

pv(t) = h
(t − s)
(e − s)

(20)

The Fig. 3 shows plotted in blue the image projections
[
pu(t) pv(t)

]T of a
single 3D point obtained by Eq. (19) using interpolation of the poses defined
in Eq. (5). The value of t is sampled to the different exposure time of each
individual row. The green line indicates the row that is actually exposed when
the pv(t) corresponds to the row number and the red cross at the intersection is
the resulting projection. For highly curved trajectories, multiple projections of
a single 3D point can be observed in a single image.

The projection(s)
[
pu(t) pv(t)

]T that is(are) effectively observed by the RS
camera is(are) obtained by intersecting the curves corresponding to Eqs. (19)
and (20). Determining t is an optimization problem that [5] solves iteratively
using first order Taylor expansion of the 2 equations around a time t:
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Fig. 3. Projections of a 3D point (in blue) in one image for poses associated to different
lines, in the case of a moving camera. The green line shows the exposed rows at the
time the 3D point is projected to it. Image from [7]. (Color figure online)

pv(t + δt) = h
(t + δt − s)

(e − s)
(21)

[
pu(t + δt)
pv(t + δt)

]
= ω(P,Tc,w(t)) + δt

dω(P,Tc,w(t))
dt

(22)

This system of equations is reorganized as:

δt = −ht + s(pv(t) − h) − epv(t)

h + (s − e)dωpv (P,Tc,w(t))
dt

(23)

By updating t as t = t + δt and iterating, t converges generally in approxi-
mately 3 or 4 iterations. Once t is determined, the corresponding projection is
obtained using Eq. (19). For slow motions, the initial value for t can be set at the
time corresponding to the middle row of the image and the iterative algorithm
is very likely to converge. However, for high dynamic motions, the initial value
has to be set wisely, as different initial values could lead to different projections
that correspond indeed to different actual projections.

4.1 Rolling Shutter PnP

The PnP (perspective-N-Points) algorithm allows to estimate the pose of one or
many cameras from n 2D-3D matching between 3D points of the scene Pk and
their observations in the images pi,k.

Having an initial estimate of the camera pose Tw and a set of 2D-3D match-
ing, a reprojection error can be computed as a function of the image i and point
k:

Err(i, k) = pi,k − π([K|0]Tw
−1Pk) (24)
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This PnP reprojection error function can be extended to RS camera, taking
into account the exposure time of the line where the 3D point is projected:

Err(i, k) = pi,k − π([K|0]Tw(t)−1Pk) (25)

In that case, the parameters to optimize θ are the complete set of CP for the
B-spline instead of independent camera pose for each image i. Refined parameters
θ̂ are obtained by minimizing the sum of squared reprojection error:

θ̂ = argmin
θ

∑
i

∑
k

Err(i, k)2 (26)

4.2 Rolling Shutter Bundle Adjustment

Similarly to the PnP, the BA is an optimization problem that aims to refine
a set of parameters by minimizing a cost function but unlike the PnP, it also
integrates the 3D points of the scene to the optimization. The parameters to
optimize are then defined by θb = [θ, P0..PM ], and are refined by minimizing the
following reprojection error:

θ̂b = argmin
θb

∑
i

∑
k

Err(i, k)2 (27)

The minimization can be achieved through Levenberg-Marquardt algorithm,
the initial value for θb being initialized for instance from a SLAM using a GS
camera model. In that case, the CP θ may be initialized directly on the interpo-
lated trajectory.

4.3 Graph Representation

We chose to use a graph representation for the optimization problem and used
the g2o library [22] as an open source graph optimization tool and we developed a
dedicated C++ solver for both the PnP and BA. The graph representation had to
be adapted for the continuous time trajectory model because it is different from
the standard formulation where each keyframe corresponds to a single camera
pose. In both cases, the observations (2d projections) are represented as edges
that connect nodes representing the unknown variables (camera poses and 3D
features of the map). In the standard formulation for global shutter cameras, the
edges connect two nodes whereas the continuous-time modeling of the camera
trajectory requires an observation to be dependent of the 4 neighboring CP and
the 6 neighboring timestamps as represented in the Fig. 4. Thus, a multi-edge is
used in the graph to model these dependencies between multiple nodes.

Using this multi-edge representation, a single graph for the PnP and BA is
created, the values for the XW parameters being fixed for the PnP while all the
parameters have to be estimated for the BA. g2o offers the numeric evaluation
of the jacobians by finite differences.



164 P.-A. Gohard et al.

Fig. 4. Graph representation of an observation of a 3D Point Xw on an image line
exposed at time ti+2 < t < ti+3. The camera pose associated to this line is constrained
by the 4 CP Tw,i to Tw,i+3 and by the 6 timestamps ti to ti+5.

5 Non Uniform Time Distribution of the CP

5.1 CP Generation Methods

As our approach uses varying time intervals adapted to the local properties of the
motion, it requires the generation of the CP at the right time. We investigated
two different approaches involving either an IMU sensor or the analysis of the
reprojection error in the images. The first one is better fitted for real-time appli-
cations as the CP can be generated online using IMU measurements while the
second involves an iterative process that predisposes it for offline computation.

Fig. 5. An example of multiple CP inside a single image, and their influence for inter-
polating the pose for different rows. 3 CP are time-stamped between the beginning
and the end of the image N : Ti+1, Ti+2 and Ti+3. The quartet of CP used for the
interpolation of the pose at each row changes three time during the image exposure.
Image from [7].
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Before providing the details of the CP generation methods, it is worth noting
that the NUTD provides the ability to create locally multiple CP inside a single
image. This leads to many CP quartets required to interpolate the pose inside
different portions of the image (see Fig. 5). As retrieving the CP associated to
a time t is an operation that is done thousands of times per frame, some care
is required to avoid wasting time searching over all the CP. This is achieved by
storing CP indices in a chronologically ordered list and using hash tables for fast
access.

CP Generation Based on IMU. An IMU sensor is generally composed of
gyroscopes and accelerometers that respectively measure the angular velocities
and linear accelerations. On current tablets and smartphones, it generally deliv-
ers measurements at about 100 Hz, which is a higher frequency than the frame
rate of the camera.

We propose a simple analysis of the measurements done by the IMU to deter-
mine when the CP are required. The Fig. 6 shows a generated trajectory (in the
two top plots). The left (resp. right) plots corresponds to the translation (resp
rotation) components. The data provided by the IMU are plotted in the middle
plots. The bottom plots show respectively the norm of the linear accelerations
and angular velocities. Different thresholding values (shown in red, blue and
black) are used to determine when more CP are required. These threshold val-
ues thi are stored in two (for acceleration and angular velocity) look up table
providing n(thi), the number of CP required per unit of time. These lists of
threshold values are generated empirically as a trade-off between accuracy of
the motion modeling and computational cost. For instance, if the angular veloc-
ity norm is below the threshold th1, n(th1) CP per unit of time are used while if
its norm rises above th1 but below th2, n(th2) CP per unit of time are used and
so on. Once the CP are created, their parameters are optimized using Eq. (26).

CP Generation Based on Reprojection Error. We propose a second
method to determine the temporal location of the CP when an IMU in not
available or as a post processing step after the application of the IMU based
method. This method involves an iterative estimation of the trajectory using
initial CP (set for instance with an UTD or with an NUTD obtained from the
IMU based method) as shown in Eq. (26). Let rest1,Δt

be the mean of the resid-
uals Err(i, k) defined in Eq. (25) between times t1 and t1 + Δt. The proposed
method uses an iterative scheme consisting of the following two steps:

– The residuals are computed along the trajectory and analyzed using a sliding
window to measure locally rest1,Δt

for varying t1. Maxima are detected and
additional CP are generated at the middle of the two corresponding neigh-
boring CP for time t1 + Δt

2 .
– An iterative estimation of the trajectory Eq. (26) is achieved with the added

CP to refine the whole set of CP.

The process is iterated until ∀t1 : rest1,Δt
< threshold.
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Fig. 6. Determination of the number of required CP per unit of time using IMU mea-
surements analysis (see the text for details). International system of units are used for
the axes. Image from [7]. (Color figure online)

These two methods allow to generate new CP specifically on sections of
the trajectory that exhibit high dynamic. Despite the fact that the IMU based
method is more intuitive because it is based on a physical measurement of the
trajectory, the reprojection based method is generally preferable for two main
reasons: First, the thresholds in the IMU based method are required to be set
cautiously, which is not the case of the reprojection error based method for which
the threshold is just expressed in pixel unit. Second, the reprojection error based
method uses the same metric than the PnP or BA algorithms, hence it can be
efficiently integrated in those contexts.

The Fig. 7 shows one translation component w.r.t time of a simple simulated
ground truth trajectory (a) on which the reprojection error method is tested.
The UTD interpolation gives poor results (b) and the associated reprojection
error (c) is significant when the high dynamic motion occurs (t ≈ 0.5). By
adding a single CP at the right time, the proposed method accurately models
the trajectory (d), dividing the reprojection error by approximately fifteen (e)).

5.2 Spatiotemporal Optimisation of the Control Poses

The NUTD B-Splines permit the optimization of the CP timestamps, who only
operate on the cumulative coefficient matrix C (Eq. 10). However, these added
parameters have to respect the following constraints to forbid the optimization to
diverge, Δtmin being the minimum temporal distance between two timestamps
and ttotal being the duration of the whole trajectory:
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Fig. 7. Results for the reprojection error based method (see text for details).

∀i : Δti−1,i > Δtmin > 0 (28)
∑

i

Δti−1,i = ttotal (29)

Starting from a poor estimate, simultaneous optimization of the CP and their
timestamps can converge to an erroneous local solution, due to local minima.
Trying to overcome this problem, we propose to firstly alternate spatial and
temporal only optimizations. A complete spatiotemporal optimization can then
be applied to refine the estimated trajectory and adapt the CP time distribution
to its actual dynamic.

6 Results

6.1 Synthetic Datasets

Results on simulated dataset are firstly presented to avoid noise induced by image
processing (such as corner extraction) and problems arising from erroneous data
association (between the extracted corners and 3D map points).

Initially, a set of CP is generated to model different types of reference trajec-
tories and a simple 3D point cloud is used as geometric model of the environment.
The Fig. 8 shows an example of generated data. Gaussian noise is added both
to these CP and 3D points. The time intervals between the CP are randomly
generated to obtain a NUTD and validate the model.

The camera frequency is arbitrary chosen (fps = 3), and the start and end
exposure time of each image is set accordingly. The camera poses are interpolated
using these parameters and the 3D points are projected to the images using
the RS projection model. Gaussian noise is then added to these projections to
generate the measurements used for the optimization.

To demonstrate the PnP, the interpolated camera poses using the noisy CP
are used as initial estimates for the CP to optimize. A hundred camera poses
are interpolated from 60 CP and are used to project the 3D point cloud. The
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Fig. 8. Example of CP along a circular trajectory, the viewing direction being aligned
with the tangent to the circle. An additional sinusoidal translation component is added
perpendicularly to the circle plane. The point cloud is displayed in red. (Color figure
online)
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Fig. 9. Illustration of the PnP optimization on a synthetic dataset. Camera poses
interpolated from initial CP (green), optimized CP (blue) and the ground truth (red).
(Color figure online)

PnP is achieved by our C++ solver and example of results are shown in the
Fig. 9. Initial camera poses (green) converge toward the ground truth (red) after
optimization (blue). Only 5 iterations were sufficient to refine those camera poses
despite significantly noisy initial estimates.
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Fig. 10. Different views for the BA using the NUTD model: The initial CP (green),
the CP after optimization (blue) and the ground truth (red) are displayed alongside
the optimized point cloud (using the same color coding). (Color figure online)
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Fig. 11. Different views of the point cloud before (green) and after BA (blue). The
ground truth is displayed in red. Only the 3D points that have been observed in the
images have been optimized, hence the blue dots do not cover the whole scene. (Color
figure online)

The BA is demonstrated with the same synthetic trajectories, but using the
noisy point cloud as initial estimate for the map, which is to be refined by
optimization. The results are shown in the Figs. 10 and 11.
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Fig. 12. The mean translation error with respect to the number of CP for two different
trajectories (left and right) with a UTD (red) and NUTD (green) for the CP. (Color
figure online)
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Fig. 13. X, Y, et Z translation (left) and rotation (right) components of the interpo-
lated trajectories after spatial optimization only (green) compared with the interpo-
lated trajectories after 3 iterations of the spatiotemporal optimization scheme (blue)
with respect to time. The ground truth is shown in red and is better approximated by
the NUTD interpolation (blue) than by the UTD one (green). (Color figure online)

6.2 Real Dataset

To motivate the proposed model, we first validate that it can be used to inter-
polated the trajectory of a real hand-held camera. This camera is equipped with
motion capture markers and tracked by a VICON MOCAP providing the cam-
era poses at 200 Hz which are used as a ground truth. Distinct images sequences
and associated ground truth trajectories are captured, with different dynamics
in translation and rotation.

We seek to fit interpolated trajectories to the ground truth ones with UTD
and NUTD B-Splines model following different optimization schemes. The initial
CP are set onto the MOCAP trajectory using UTD. Error ErrT ∈ R6 between
interpolated poses Tw(t) and the ground truth TGT(t) is minimized for all
timestamps tj of the samples acquired by the MOCAP:

ErrT =
∑

j

log(TGT(tj)−1Tw(tj)) (30)
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The minimization is achieved using the Levenberg-Marquardt algorithm and
jacobians computed by finite differences. This optimization allows to refine spa-
tially the CP. As described earlier, additional CP are iteratively generated
between the two CP where surrounding the highest error after each optimization
step.

The Fig. 12 shows the mean translation error after spatial optimization with
respect to the number of CP, for a UTD (red) and a NUTD (green). As expected,
at equal number of CP, the NUTD allows a more accurate modeling of the
trajectory than with a UTD, because the algorithm adds CP where required. For
a greater number of CP, the UTD and NUTD tend to produce similar results as
seen in the left plot, due to the fact that with a sufficient amount of CP, even a
UTD accurately represents the trajectory.

It is also important to note that for a greater number of CP, the error (mainly
for UTD but also for NUTD) can increase as it is shown in the right plot, because
the initial estimates of the CP can be set such that the trajectory cannot be
correctly approximated.

The CP generation method adds CP at arbitrary time between the times-
tamps of the two neighboring CP, basically at ti+2 + ti+3

2 . The time distribution
is then refined by optimizing the timestamps of the CP.

The spatiotemporal optimization offers in the majority of the cases a sig-
nificant reduction of the error. However, better results have been observed by
following an alternate optimization scheme. A first spatial optimization is done
until it converges. Then these 3 steps are applied n times:

– Temporal optimization
– Adding a CP where the error is maximal
– Spatial optimization.

The Fig. 13 shows the interpolated trajectory components after spatial opti-
mization (green), and after n = 3 spatiotemporal optimization cycles (blue),
alongside the ground truth (red). The temporal and spatial distributions of the
CP are adapted automatically to the trajectory dynamic. This is noticeable on
the rotation components (right) and the translation z component (lower left) of
the trajectories, where the UTD model fail to model fast oscillations.

Close-up view on different trajectories are given in Figs. 14 and 15 illustrating
the final CP distributions. For the NUTD, more CP are used and optimized both
temporally and spatially to accurately model fast motions, while less significant
motions are smoothed. Note that with additional optimization and CP addition
cycles, the CP distribution would adapt to the whole trajectory, however the
error reduction would be less significant. There is obviously a trade-off between
the increase in accuracy and the induced increase in terms of computational
cost.

The Fig. 16 highlights the evolution of the error (red) during the optimization
iterations. It is important to note that the plots begin after the convergence of a
first spatial optimization. Hence, without the proposed approach, the minimum
achievable error through standard spatial optimization corresponds to the first
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Fig. 14. X translation (a), Y translation (b), X rotation (c) and Y rotation (d) com-
ponents of the interpolated trajectories in sequence 1.

Fig. 15. Z translation (a), X rotation (b) and Y rotation (c) components of the inter-
polated trajectories in sequence 4.

error displayed in the plots. The temporal optimization allows to reduce this error
by a significant factor using either no (a, b) or a low number (c) of additional
CP.
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Fig. 16. Evolution of the translation error (red) as a function of space (green) and
time (blue) optimization iterations. The optimization follows temporal then spatial
optimization steps with without addition of CP in two first cases (a, b) whereas it
required additional CP in the third case (c). In this test, the non optimal initial values
for the added CP at iterations 16, 24 and 35 are the reason of the temporarily increased
error. The error is then minimized, taking into account these added CP. (Color figure
online)

7 Future Works

The conducted experiments demonstrated that it is possible to adapt the spa-
tiotemporal distribution of the CP to the dynamic of real trajectories through
the proposed optimization process. The used cubic interpolation model allows
an accurate modeling of the trajectory. Quadratic or even linear models can be
sufficient depending on the type of trajectory, however the availability of inter-
polated velocities and accelerations can be useful for applications using inertial
measurements. The cost function used in our experiments on real datasets is
relative to a ground truth that is not available in the case of a SLAM process
whereas the available inertial measurements would be compared with the deriva-
tives of the interpolated trajectory. Hence it could be possible to integrate the
inertial measurements to the optimization as done in [5], which would allow to
recover the metric scale of the scene and to perform auto-calibration.

The presented work is still an early work, and new tests within a complete
SLAM process using the NUTD model must be driven on real datasets, involving
the complete image processing pipeline. We also plan to integrate other geometric
features such as segments, lines and planar patches to describe the environment
and adapt their observation models to the RS cameras.
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8 Conclusion

A NUTD cumulative B-Spline model maintaining the C2 continuity of the inter-
polated trajectory have been presented. This model have been tested to fit
interpolated trajectories to real and synthetic ones using different optimization
schemes. The improvement offered by the optimization of the CP timestamps
have been demonstrated for both simulated datasets and real trajectories. The
integration of the model within a BA have been shown for simulated datasets
only as it did not involved to operate image processing and because the ground
truth for the environment was directly available.

The continuous-time trajectory model using a NUTD for the CP allows a
reduction of both the memory usage and the computational cost. For trajectories
with large partially linear parts, as encountered in automotive applications, a
large amount of camera poses can be efficiently parameterized by a small number
of CP. For trajectories with varying dynamics, it is possible to accurately model
the high speed motion by locally increasing the CP density.
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Abstract. The Matching or Registration of 3D point clouds is a problem
that arises in a variety of research areas with applications ranging from
heritage reconstruction to quality control of precision parts in industrial
settings. The central problem in this research area is that of receiving
two point clouds, usually representing different parts of the same object
and finding the best possible rigid alignment between them. Noise in
data, a varying degree of overlap and different data acquisition devices
make this a complex problem with a high computational cost. This issue
is sometimes addressed by adding hardware to the scanning system, but
this hardware is frequently expensive and bulky. We present an algorithm
that makes use of cheap, widely available (smartphone) sensors to obtain
extra information during data acquisition. This information then allows
for fast software registration. The first such hybrid hardware-software
approach was presented in [31]. In this paper we improve the performance
of this algorithm by using hierarchical techniques. Experimental results
using real data show how the algorithm presented greatly improves the
computation time of the previous algorithm and compares favorably to
state of the art algorithms.

1 Introduction and Previous Work

The registration or matching of objects represented as 3D point clouds is a
widely studied problem in research communities such as Computational Geom-
etry [2,6,15], Computer Vision [10,11,17] and Computer Graphics [4,44]. Its
many existing applications touch subjects as diverse as medical imaging [28],
road network matching [12] or mobile phone apps [33,41].

The main aim of the 3D point cloud registration problem is to find a rigid
transformation1 μ : R3 −→ R

3 that brings a point cloud B close to another point
1 Holding d(ai, bj) = d(µ(ai), µ(bj))∀ai, bj ∈ R

3, d() being the euclidean distance.
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cloud A in terms of a designated distance. A = {a1, . . . , an} with ai ∈ R
3 ∀i =

1 . . . n and B = {b1, . . . , bm} with bj ∈ R
3 ∀j = 1 . . . m. We refer the interested

reader to [14] for a review of the problem.
The registration process consists of several steps (see Fig. 1).

Fig. 1. Registration pipeline.

As existing devices for data acquisition produce point clouds with a large
number of points, first a Detection step reduces this data size. Points that are
prominent (according to a predefined criterion) are selected. In the second step
of the Pipeline values are assigned to the key-points. These values character-
ize the local shape of the object around each key point. This step is named
Description. This part of the pipeline has been the most active in research for
many years. Among the many existing approaches [21,40,42,45] obtained high
repeatability scores in studies such as [38,39]. In terms of detector performance,
[23,29,42] present very good results in terms of speed and accuracy. However
new approaches keep appearing and claiming improved performance in terms of
speed and accuracy. See, for example [46,47].

In the subsequent step of the point cloud matching pipeline, Searching Strate-
gies are used to identify point correspondences. Once at least three correspon-
dences have been detected it is possible to determine a rigid motion between the
two sets that brings corresponding points close together. As this step is poten-
tially computationally very expensive descriptor values are used to prioritize
the best apparent correspondences. For most point cloud matching algorithms,
the process is divided into two parts. Initially an initial pose for matching is
found through coarse point correspondences and then an iterative process is
used to bring the two sets globally as close together as possible. This last step is
called fine matching. Perhaps the most significant contributions made recently
to the point cloud matching problem correspond to the coarse matching search-
ing strategies presented by [3] and improved in [26]. Efficient coarse matching
approaches (also including [18]) are able to deal with large data sets in an effi-
cient manner so the subsequent execution of a fine matching algorithm (usually
ICP [7]) converges. Recently, and similar to other research areas, a strong new
trend present in all the steps of the matching pipeline is the use of deep learning
approaches [16,19,43].
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Fig. 2. Registration example, two views from the bust model are brought to the same
coordinate system by rigid motion µ. Figure originally appearing in [36].

3D Point Cloud Matching for Object Reconstruction from Multiple
Views. A typical instance of the point cloud matching problem in 3D is that
of object reconstruction. This requires gathering 3D object information from
multiple viewpoints. Acquisition devices are used to capture discrete points in
the surfaces of objects which then represented as point clouds.

Since every view usually contains 3D data corresponding to a different spa-
tial coordinate system it is necessary to transform the information from all the
views into a common coordinate system (see Fig. 2 for a graphical example).
From a formal standpoint, two such systems are related through three angles
of rotation and a three-dimensional translation vector. In order to register two
objects represented as point clouds, a minimum of three point correspondences
are needed to determine a 3D rigid motion. Thus, the number of possible corre-
spondences is in O(n6), making the design of algorithms that can navigate this
search space efficiently an important issue. Most existing methods deal with this
issue with pure software solutions. By using the discriminating power of shape
descriptors For instance, approaches based on shape descriptors determine point
correspondences based on local shapes measures (see, for example [27,35] for
descriptor comparison). Other strategies include data filtering [13,37] or devis-
ing novel searching strategies to speed up the search for correspondences between
points [3]. There are methods which expect as the input of the 3D reconstruction
system not only 3D point position data, but also the normal vectors of every
3D point [22]. Another generic way to increase the efficiency of any parallelized
method is to use GPU implementations [9].

However, the issue of creating fast coarse matching algorithms can also be
tackled with the assistance of hardware. At its most basic level, the acquisition
system can be upgraded with dedicated parts to gain information on some of
the parameters [24,25]. This type of solutions (usually involving the use of robot
arms and/or turntables) demands complex installations and are often expen-
sive. A recent trend [33,41] seeks to use sensors from mobile devices in order
to help registration. These sensors are commonly available and less expensive,
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circumventing many of the previous problems. The goal in this case is to propose
hybrid 3D registration methods which combine the best features of software and
mechanical approaches. Significantly, [31] presented a hybrid algorithm with a
hardware part based on smartphone technology that managed to gain access to
rotation data that could then be used to search for the remaining translation
part of the rigid motion by software means. The idea of separating the rotation
and translation part was not new and can be found, for example in [20]. Once
the rotation part of the problem is solved (either by using hardware data as in
the former reference or by software means as in the later), what remains is deter-
mining the translation vectors that brings the two sets being registered closer
together. To solve this problem it is enough to find one single correspondence
between one point in each set so that the resulting translation brings the sets
close enough for a fine registration to succeed. This yields an immediate O(n)
asymptotic cost for this version of the problem.

In this paper we present an algorithm that extends the work in [31]. By using
the hardware part developed in the mentioned reference, we are able to focus
on the software solution of the translation problem. We propose a hierarchical
approach that finds a coarse matching solution by selecting one point in one set
and determining a correspondence in the other in the following way. First, the
search is initialized by using the center of masses of the set. Then, the search
proceeds using a regular sample grid. Initially only the overlap between bounding
boxes of the sets is considered. Next, the sets are divided in regular cells and
the number of points in each cell is considered. Finally, the result of the coarse
step of the algorithm is determined by computing the residues considering the
points in the sets.

The rest of the paper is organized as follows. Section 2 introduces the papers
that motivates this research and provides details on the approach used in the
current work. The experiments in Sect. 3 illustrate the validity of our approach
and compare it with other registration methods. This comparison includes not
only the original algorithm [31] but also two widely used registration meth-
ods: (a) The 4PCS method, which is one of the most widely used [3], and (b)
its improved version, the super4PCS method [26] which is, to the best of our
knowledge, the fastest general-purpose coarse matching algorithm to date. The
paper ends with a summary of the findings of the paper with special attention to
the most salient results reported in the experiments in Sect. 4. An initial version
of this work appeared at [36].

2 Materials and Methods

In this section we start by providing some details on the algorithm that motivates
this research. On the second part we provide details on the new approach to the
problem.
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Fig. 3. Detailed registration pipeline. Figure originally appearing in [36].

2.1 Previous Algorithm

A detailed version of the registration pipeline is presented in Fig. 3. As no filtering
or detection steps where used (although the algorithm does allow for them) and
the searching strategies part was divided in two steps, the algorithm presented
in [31] is as a hybrid hardware-software coarse matching algorithm.

– First, the authors roughly determine the sets rotation by using a smartphone
providing 3D orientation data (from the accelerometer and magnetometer
sensors). The orientation angle outputted by the sensors is used to produce an
orientation matrix for the scanning system respect to a certain world reference
axis. These orientation matrices are composed to obtain the aforementioned
rough rotation correspondence.

– In the second step, translation is determined. As the previous rotational align-
ment is expected to be noisy, a robust translation matching algorithm is
needed. The goal here is to provide a good enough initial pose for the subse-
quent fine registration algorithm to succeed.

As the data used for the experiments in the reference where made available
by the same authors in [34] we can produce reliable comparison results in Sect. 3
as well as focus on the improvement of the translation (software) part of the
problem in the current work:

– Once the two sets A and B have been registered in terms of rotation, the goal is
to find a translation τ such that τ(B) is close enough to A in terms of the mean
Euclidean distance of the Nearest Neighbouring (NN) point pairs between
sets. Close enough in this case stands for a pose that allows the subsequent fine
matching algorithm [37] to converge to the best possible alignment without
stalling at any local minimum.

– The search is initialized by picking a point in set A for which a correspondence
will be searched for. In this case, the authors choose this point xA randomly
among the 100 closest points to the center of masses of set A.

– The algorithm then searches for the best correspondence for xA among all
the points in set B. To do this a grid-based greedy search is performed that
tries several possible translations. At every iteration, the best translation
is chosen by computing the distance between A and each of the proposed
τ(B) and choosing the best. This step is commonly referred to as residue
computation. The grid is subsequently expanded around the ongoing best
point and a new iteration starts. Notice that with this strategy, the number
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of points explored in the grid and, thus, the number of residues computed,
is constant for all executions. However, for every residue computation, the
time needed will vary depending on how close the two sets are. Experimental
details of this are presented in Sect. 3.4.

– After finishing the grid-based search, a translation vector is outputted. This
data is joined with the rotation estimation obtained from the sensors and
the combination becomes the result of the matching algorithm. Then the
algorithm proceeds as described in Fig. 3 by running a fine matching algorithm
[37].

2.2 Our Approach

We propose to look at the sets being matched in a hierarchical fashion to
avoid unnecessary residue computations and save computation time. A graphical
overview of our algorithm is presented in Fig. 4.

Fig. 4. Hierarchical approach. Successive approximations of the software part of the
coarse matching algorithm consider more and more detailed information. First, the
algorithm is initialized using centers of masses. Second, the overlap volumes of the
bounding boxes of the sets being matched are considered. Third, the number of points
contained in a Regular Grid is factored in. Finally, full sets are used. Figure originally
appearing in [36].

After obtaining the rotation data, the algorithm needs to find the translation
τ that brings the two sets being matched as close as possible. A naive approach
would be to choose a point in set A and try all the possible correspondences
with all the points in set B. This would have O(n) cost (with n=|B|) which is
already feasible in most cases. The authors in [31] realized how it is not necessary
to explore the whole search space and that, by taking samples using a grid it
was possible to “zoom in” a good enough coarse solution so the subsequent fine
matching algorithm would produce the best possible solution.

However, the algorithm used to explore the grid treated all possible trans-
lation equally. The exact same process was undergone by the first translation
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tested than to the final one (which was much closer to the final solution after
having undergone several algorithmic iterations). This resulted in a large number
of operations where the distance between two sets had to be computed (residue
computations). In our case, we take this into account and look at the sets being
matched using varying levels of detail. For the sake of simplicity from now on we
will consider that each new iteration increases the level of detail. The resulting
algorithm can be described in the following fashion:

– As sets A and B have been registered up to rotation the algorithm needs to
find the translation τ such that τ(B) is close enough to A for the subsequent
fine matching algorithm to succeed.

– Our algorithm is stable enough to be initialized directly by using the centers
of masses of the two sets (Fig. 4, left). As the following steps optimizes high
level (bounding box) overlap between the two sets, we can perform a faster
initialization. Consequently, xA is chosen to be the center of mass of set A
and the search grid of set B is built around the center of mass of set B.

– In the first iteration of the grid-based search (Fig. 4, middle left), the algo-
rithm only considers a bounding box computed for each set: B(A) and B(B).
For each grid point b the translation τb of vector b − xA is computed and the
volume overlap between τb(B(B)) and B(A) is considered. All the points in
this first level of the grids are considered until the optimal volume overlap is
determined.

– In the second iteration of this search (Fig. 4, middle right), the two sets being
matched are stored inside a 3D regular grid. The bounding box of each set is
divided in regularly spaced cells and each point is assigned to a cell. For each
cell, we annotate only the number of points stored in it as the “weight” of the
cell. This stands for a “mid-level” representation of the sets. This representa-
tion groups points by spatial proximity and summarizes the set as a number
of weighted cubic regions. In this case for each translation τb considered we
check whether or not there are enough points in the cells intersected by every
translated cell. Finding the best score in terms of possibly matched points is
the goal in this step. However, the bounding box overlap values are required
to remain within a threshold of the value obtained in the previous step.

– In the third and final step of the grid-based search, (Fig. 4, right), all the
points in the sets are considered and the residues between the sets are com-
puted. As is usual in this type of computations, a monte-carlo approach is
used in order to speed up these computations [13]. As a major difference with
[36], in the current work we have used two separate data structures for residue
computations to assess their importance in the overall runtime.

– After finishing the grid-based search the algorithm proceeds by running a fine
matching algorithm [37].

2.3 Residue Computation

An important issue in point cloud matching problems is how to assess distance
between point sets. A commonly used distance is the Root Mean Squared Dis-
tance (RMSD). Taking into account the object reconstruction problem, where
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different views cover different parts of the object with some overlap only a subset
of points of a given view is expected to match some points of the other view (par-
tial match). Thus, in order to avoid non-overlapping subsets of points ruining
residue computation, only those points ai whose nearest neighbor μ(bj) is clos-
est than a given threshold ε are considered as matched points belonging to the
overlapping subset C. A certain percentage of matched points is also required
for a motion to be accepted as a solution to the matching problem. The residue
between sets A and B is then defined as:

RMSD(A, μ(B), ε) : ai, bj ∈ C =

√
√
√
√

∑

C

d(ai, μ(bj))2

|C| (1)

where μ(bj) is the nearest neighbor to ai in B (euclidean distance d).
Given a set of 3D points B and a query point aq ∈ R

3 RMSD can be computed
from finding the point bq ∈ B closest to aq (d(aq, bq) ≤ d(bi, bq)∀i = 1 . . . n) or
selecting the set of points in B within a range ε of aq ({bq ∈ B|d(aq, bq) < ε}).
These approaches are known as Nearest Neighbor and Range Searching problems,
respectively. Hence, in range searching, the residue is computed by discarding
points away from ε while in nearest neighbor is computed iterating over the
points to minimize ε distance. Both approaches can be solved in linear time
by brute-force. Hence, residue computation can be naively achieved in O(n2).
Although this is sometimes done for small data sets, it is time consuming and
quickly becomes unacceptable when n increases. Residue computation is crucial
in the registration pipeline because it is used for measuring the initial alignment
conditions like overlapping ratio, and for the evaluation of final alignment results.

As an improvement to the algorithm presented in [36], in this paper we will
study the effect of residue computation in our approach. The previous algorithm
used the widely used KDtrees [5] from the ANN library [1]. The KDtree is a
binary tree where each node represents a hyperplane dividing the 3D space. In
each level, a division is made according to one of the 3D axes. The points in
the parent node are sorted according to the selected coordinate and the splitting
value is used as the division point organizing the points in the left and right
son nodes. For a detailed explanation on splitting values see. This operation is
repeated with all coordinate axes, until leaf nodes (i.e. nodes with less than a
previously fixed number of points) are obtained.

In the current work we improve the performance of the algorithm by using
regular Grids to perform range searching residue computations. This data struc-
ture, introduced in [13] and used, for example, in [8], stands for a regular 3D
grid that divides an axis aligned bounding box into cells each containing a set
of unsorted points. A section of each coordinate axis contained in the bounding
box is divided into k intervals where k = �( 3

√
n)�. Then the Cartesian product

of these intervals is considered and a set of k3 regular rectangular prism cells is
obtained. The goal is to have roughly as many cells as points in the set so each
point would correspond to one cell in the best possible distribution of points.
This heuristic data structure presents high asymptotic costs when points are not
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evenly distributed among the cells. However, in practice it obtains good results
(details follow in Sect. 3).

3 Experiments

In this section we present experiments with real data that show how the algo-
rithm presented in this paper improves the performance of the algorithm used
in [31]. Furthermore, the current work also improves on the preliminary version
presented in [36] by studying the effect of residue computation data structures
in the performance of the algorithm. We also compare the algorithm presented
in this paper to state of the art point set matching algorithms in order to illus-
trate the efficiency of our approach. The code for all the algorithms considered
was implemented in C++. All experiments where run using a 33 MHz processor
under a linux Ubuntu operating system.

Some significant improvement in the run-times reported here for the algo-
rithm by [31] and in the original paper can be observed. This is mostly due to
code optimization and parameter tuning. Due to the fact that the algorithm
presented in this paper extends and improves that in [31] we were able to use
some of the profiling information studied to improve our code to also improve
that of [31]. In order to keep the comparison fair, we present these improved
results in this paper. Additionally, this allows us to show clearly what part of
the improvement corresponds to general code optimization and what part related
to the use of the hierarchical approach presented in this paper. From now on,
an for the sake of brevity, we will refer to the previous algorithm as the regular
grid algorithm.

3.1 Data Used

The data used in this section corresponds to the “bust” or “mannequin” dataset
used in [31] (detailed in [34]). We feel that using the same data makes the
comparison more meaningful. This model along with accompanying hardware
alignment data can be downloaded from http://eia.udg.edu/3dbenchmark which
we also feel helps the reproducibility of results.

The data consist of a 5 views from the mannequin “bust” model (see Fig. 5).
This corresponds to a real-sized mannequin of a human body scanned with
a 3D structured-light system. See [30,32] for more details on the model and
acquisition procedure. Each of the 5 views of the model contain ≈450000 points.
No post-processing was performed. This dataset presents quite a lot of noise
and the overlap between some of the views is very low (ranging from 60–70%
in consecutive views to around 10% for the most distant views). This is a very
challenging scenario for any registration method.

We registered the 5 available views each against all different views. This pro-
vided us with 20 different registration instances. Amongst these, 4 presented
low (around 10%) overlap, 6 presented medium (between 30 and 50%) overlap

http://eia.udg.edu/3dbenchmark
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Fig. 5. Left: bust0 view of bust model. Right: detail of bust0 view. Figure originally
appearing in [36].

and the remaining 10 presented high (approximately between 60 and 85%) over-
lap. All the results produced in this section were checked manually to ensure
correctness and the percentage of overlap obtained were closely monitored.

3.2 Runtime Improvement Due to the Hierarchical Approach

In order to evaluate whether the hierarchical approach described in Sect. 2
improves the run-time performance of the algorithm, the code-optimised ver-
sion of the regular grid algorithm was compared with the algorithm presented in
this work. Table 1 presents results corresponding to five representative registra-
tion instances. The first half of the table corresponds to the regular grid method,
the second half of the table depicts the results of our new proposal. Within each
half of the table, the two initial rows and the final row correspond to sets with
high overlap, the third row to sets with low overlap and the fourth to medium
overlap.

All registration instances where also checked for correctness manually. All
times are presented in seconds. The first column lists the views involved in the
registration, the second and third column contains information on the overlap
obtained for set A after coarse and fine alignment respectively. The fourth and
fifth column present times for the coarse matching algorithms as well as the total
time (which includes the former as well as the time for fine matching).

Table 1 shows how the proposed approach performs faster than the regular
grid algorithm. On average (over all views) the time needed by the new algorithm
was less than half that of the regular grid algorithm. Notice how the overlap after
coarse matching is sometimes higher for the regular grid algorithm.

This happens due to this degree of overlap being the only criteria that is
considered while our approach relies on other criteria to speed up the search
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Table 1. Details on the runt-time improvement obtained by the hierarchical approach
introduced in the current paper.

Views Overlap % coarse Overlap % fine Coarse time (s) Total time (s)

Regular
grid

0–1 15.30% 86.36% 14.23 17.39

1–2 17.70% 72.24% 18.52 21.26

1–4 8.15% 9.87% 19.14 22.17

2–4 11.03% 43.38% 15.13 17.84

3–4 19.71% 76.53% 12.55 15.10

Our
approach

0–1 11.89% 86.34% 0.087 3.40

1–2 17.44% 72.28% 0.010 3.87

1–4 3.81% 9.84% 9.014 12.24

2–4 11.03% 43.30% 7.63 10.11

3–4 15.28% 76.58% 3.63 7.13

(such as bounding box overlap or coincidence of points in grid cells). In any
case, the small reduction in coarse matching overlap does not affect the success
of the subsequent fine matching algorithm as can be seen in the third column of
the table.

3.3 Comparison with SOA Methods

In this section we study the performance of our algorithm against state of the
art point cloud matching algorithms. Additionally to the algorithm that moti-
vated the current research, [31] two widely used registration methods. The 4PCS
method [3] is a widely used general-purpose point cloud matching method that
also counts with an improved version called super4PCS [26] which is, to the best
of our knowledge, the fastest general-purpose coarse matching algorithm to date.

The first issue that needs to be addressed is that of the nature of the methods
being considered. The two grid based methods are hardware-software hybrid
methods, so they rely on the fact that they can obtain information on the rotation
part of the problem and take advantage of this to make the software part of the
algorithm much simpler (they only look for a translation). Conversely the two
4PCS-based methods are actually looking for rotation as well as translation, so
they are exploring a larger search space. While we acknowledge this, the point
of hybrid methods is actually that the information that they get from hardware
provides an advantage over pure software methods. In order to limit this as much
as possible, we run the 4PCS-based methods both with the original sets and also
with the same rotation-aligned methods used by the hybrid methods. We found
out that the algorithms were faster with the rotation aligned sets, so these are
the numbers that we report here.

Regarding parameter tuning and precision: Grid based algorithms mainly
needed to determine the size of the grid. After trying 10 different grid sizes, we
found out that grids with very few points (six grid points per iteration) did miss
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Fig. 6. Run-times for: 4PCS algorithm [3], Super4PCS [26], Regular Grid [31] and
Improved Grid (current paper). For the improved grid we present two versions, the first
computes residues using a KDtree, the second (Imp.Grid Res. in the graph) computes
the residue using regular grids. (Color figure online)

the correct result in some cases. Consequently, we include results corresponding
to the fastest results among those grids that produced correct results (this cor-
responds to grids with 6 points per coordinate for a total of 18 points per grid
iteration). Conversely, 4PCS algorithm required quite a lot of parameter tuning
and were prone to missing the correct result if the parameters were not set prop-
erly. The numbers presented here correspond to the best running time that we
could achieve after trying several parameter configurations (so they correspond
to different parameter settings).

Figure 6 presents run-times for all the algorithms studied. For each of them,
data is separated in registration scenarios with low overlap (first bar, in blue),
medium overlap (second bar, in red) and high overlap (third bar, in yellow). All
times are presented in seconds. For the rest of this section we will comment on
the results obtained by the state of the art methods and the non-optimised (in
terms of residue computation) version of our algorithm. Consequently, we will be
focusing on the four initial groups of bars in the graph, from 4PCS to Imp. Grid.
The impact of residue computation optimization will be addressed in Sect. 3.4.

Results show how the rotation information obtained from hardware sensors
allows to make the software part of these algorithms quite fast. Specifically, the
previously existing regular grid method outperforms the well-established 4PCS
method and is the most robust method overall in the sense that it presents less
relative difference in execution times between sets with high and low overlap.
The times of the 4PCS algorithm are somewhat skewed by some registrations
that are way slower than the others. If we ignore these cases, the running times
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of this algorithm become slightly inferior to those of the regular grid algorithm
although quite far from those of the super4PCS algorithm.

The algorithm presented in this work is the fastest in the comparison and
outperforms (for this particular type of problem) even the super4PCS algorithm.
In further detail, while the super4PCS is the fastest algorithm in 5 of the 10 high
overlap cases (with an average total time of 3.97 s for all the matching process
against the 4.01 s average for our algorithm), it also struggled to find a solution
in 10 of the 20 cases. In these cases it failed to find the best solution and stalled
under 5% overlap after fine matching. After careful parameter tuning, it was
possible to obtain the best solution but the resulting executions took longer.
The resulting aggregate of the times of the fastest parameter configurations
leading to a correct solution is what has finally been reported. On average, the
current paper obtained a 19.67% improvement over the super4PCS algorithm.

3.4 Effects of Residue Computation Data Structues

As can be seen in Fig. 6, the optimization of the computation of residues has a
significant effect on the performance of the algorithm presented. The improve-
ment depends, as expected, on the weight of the residue computations on the
matching algorithms. Subsequently, higher improvement (of up to 32% in one
of the cases) is observed for the registration instances with lower overlap. In
these cases, more overlap means matching that are easier to find and, thus,
less residue computations so the improvement in the sets with higher overlap
is smaller (around 10% on average). The fact that using the very simple regu-
lar grid data structure achieves a significant improvement over the widely used
(although general purpose) ANN KDtree also indicates how it is important to
analyze both asymptotic costs as well as practical performance when studying
the suitability of a data structure for one particular application.

4 Conclusions

In this paper we have presented a Hybrid hardware/software approach for point
cloud matching applied to the problem of reconstructing objects from different
views with varying degrees of overlap. Building on the previous algorithm pre-
sented in [31] by improving the translation determination part of its software
step we managed to cut the average computation time by more than half. The
hierarchical approach presented for the new software part of the algorithm is
exemplified in Fig. 4.

Results run with real data show (Table 1, second column) how this reduction
is achieved at the cost of achieving slightly less overlap after the coarse matching
step. This does not, however, reduce the algorithm accuracy after the refinement
step as the subsequent (ICP) fine matching algorithm is able to make up for the
loss. As providing a sufficient starting step for fine registration is considered the
main goal of coarse matching algorithms, the trade-off between speed and overlap
percentage is experimentally shown to be acceptable. Additionally, and focusing
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on time efficiency, we have shown how hybrid algorithms can outperform two well
established coarse registration methods including a 19% improvement over the
super4PCS [26] algorithm which is, to the best of our knowledge, the best pure-
software, general-purpose point cloud registration algorithm to date. Finally, we
have shown how the use of dedicated structures for residue computation results
in a further improvement (of between 5% and 32%) in runtime. This is achieved
by using a regular grid structure for residue computation.

Acknowledgements. We want to thank the authors of the state of the art algorithms
considered for making their code publicly available.
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Abstract. 8K is the pinnacle of the video systems and 8K broadcasting
service will be started in December 2018. However, the availability of con-
tent for 8K TV is still insufficient, a situation similar to that of HDTV in
the 1990s. Upconverting analogue content to HDTV content was impor-
tant to supplement the insufficient HDTV content. This upconverted
content was also important for news coverage as HDTV equipment was
heavy and bulky. The current situation for 8K TV is similar wherein cov-
ering news with 8K TV equipment is very difficult as this equipment is
much heavier and bulkier than that required for HDTV in the 1990s. The
HDTV content available currently is sufficient, and the equipment has
also evolved to facilitate news coverage; therefore, an HDTV-to-8K TV
upconverter can be a solution to the problems described above. However,
upconversion from interlaced HDTV to 8K TV results in an enlargement
of the images by a factor of 32, thus making the upconverted images very
blurry. Super resolution (SR) is a technology to solve the enlargement
blur issue. One of the most common SR technologies is super resolution
image reconstruction (SRR). However, SRR has limitations to use for the
HDTV-to-8K TV upconverter. In this paper an HDTV-to-8K TV upcon-
verter with nonlinear processing SR has been proposed in this study in
order to fix this issue.

Keywords: 8KTV · 4KTV · HDTV · Up-convert ·
Super resolution with non-linear processing ·
Super resolution image reconstruction ·
Learning based super resolution · Non-linear signal processing

1 Introduction

Research about HDTV started in the 1960s, and its practical usage began in the
late 1990s. The broadcasting service began in 2000 for digital satellite HDTV
and in 2003 for terrestrial HDTV, and now both services are offered in multiple
countries. More than 30 years of research were required for HDTV to become a
practical service, and only 18 years have passed since these services began. How-
ever, 4K TV services have been made available via satellite broadcasting and
Internet services. The horizontal and vertical resolutions of HDTV are 1,980
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pixels and 1,080 pixels, respectively [11], and that of 4K TV are 3,860 pixels
and 2,160 pixels, respectively [12]. The 4K TV system has evolved over time
and is used for multiple applications such as sports content, cinema and per-
sonal videos. 8K TV has a horizontal resolution of 7,680 pixels and a vertical
resolution of 4,320 pixels [12], which is four times greater than that of 4K TV
and 16 times greater than that of full HDTV (progressive HDTV). Broadcasting
HDTV adopts an interlaced video system which contains half the information as
that contained by full HDTV. This means that 8K TV content has a resolution
32 times higher than that of the broadcasting HDTV content. The system clock
frequencies for broadcasting HDTV, 4K TV and 8K TV are set at 74.25 MHz,
594 MHz and 2,376 MHz (2.376 GHz), respectively. The HD equipment used
currently has evolved both in terms of technology and cost effectiveness, and a
majority of the video content available, including films, is made in HD. Although
the use of commercial 4K TV is practical, its equipment is not commonly avail-
able, especially that used professionally, for example, 4K TV professional video
cameras. Sony began to release its professional studio cameras in 2014, which
are still expensive. Other 4K TV equipment such as professional editing sys-
tems, transmission systems and outside broadcasting cars are both technically
immature and expensive. All types of 8K TV equipment are currently under
development or are being researched; therefore, its practical use is much more
difficult to begin than that of 4K TV. However, 8K TV broadcasting strats in
December 2018 and is expected to be a highlight of the 2020 Olympic Games.
There are a couple of problems that 8K TV services are faced with. First, 8K
TV content for broadcasting is crucial but rather insufficient. Second, using
8K TV equipment in news gathering systems such as outside broadcasting cars
and helicopters is not currently practical because of the reasons described ear-
lier. The same situation existed for HDTV in the late 1990s, wherein creating
HDTV content and gathering news was difficult because of the expensive and
bulky equipment. In contrast, analogue TV content was sufficient and the pro-
fessional equipment required was less expensive and of small size and low weight.
Therefore, analogue TV content was upconverted to HDTV content to resolve
the problems of insufficient HDTV content and expensive equipment. The HD
equipment available currently is sufficiently small to be used for news gather-
ing and outside broadcasting; however, analogue content is still used for HDTV
broadcasting with analogue TV-to-HDTV upconversion as much excellent ana-
logue content has been stored and accumulated over time. However, upconverted
content is blurry because the images are interpolated. The highest resolution of
the original image and the interpolated image remains the same despite using an
ideal interpolation filter. The upconverted HDTV content can be immediately
recognised as it appears blurry. The resolution ratio of HDTV to analogue TV is
5:1. The same issue will occur if HDTV content is used for upconversion to 8K
TV. The accumulated HDTV content is interlaced as the professional equipment
used for it is an interlaced system; hence, we need to upconvert this interlaced
content to 8K TV content, including that for news gathering and outside broad-
casting.
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As discussed earlier, the resolution ratio of HDTV to 8K TV is 1:32, whereas
that for analogue TV-to-HDTV conversion is 1:5. This shows that HDTV-to-8K
TV conversion produces blurrier content than that produced by analogue TV-
to-HDTV conversion. Currently the upconversion from the interlaced HDTV
to progressive HDTV (full HD) is not so difficult and the full HD equipment
such as cameras, recorders and other studio equipment are available. However,
the upconversion from full HD to 8K is still 1:16 and it is higher magnifying
scale than that of analogue TV to HDTV. Such blurry content does not take
advantages of the high resolution screen, which is the most important sales point
of 8K TV. Therefore, it is necessary to develop a new technology which can cope
with creating such elements that are not available for the current upconverted
images [8].

2 Super Resolution (SR)

2.1 Enhancer

For years, TV manufacturers have competed to improve the image quality of
their sets, and enhancer (sometimes called “unsharp masking” or “edge enhance-
ment”) was the only real-time video enhancement method available [14,20,25].
The enhancer is an effective method for improving image quality; however, it
does not truly improve an image’s resolution. Rather, it merely amplifies the
image’s edges, which are detected with a high-pass filter (HPF) prior to being
amplified. When enhancer is applied to a blurry image, it does not improve the
image quality because there are no edges to be detected.

2.2 SR for Still Image

Methods for creating HRIs from LRIs have been researched for many years. Until
the 1990s, a defocused photograph was always the target of such research and the
goal was “image restoration”. These methods were later extended in scope and
their current goal is SR [15,22]. Currently one of the most common SR techniques
is super resolution image reconstruction (SRR) [1,3,4,10,13,18,19,28,29].

Although other SR technologies exist [5,26], they do not work in real time.
This study discusses real-time video improvement technologies. SRR is, at
present, the only SR method among the many proposed to be incorporated into
commercial products and to work in real time [16,27]. However, its resulting
image quality is inferior to that obtained with conventional enhancers. In fact,
subjective tests have shown that the image quality of commercial HDTV sets
equipped with SRR is poorer than that of HDTV sets equipped with enhancer
technology [7]. Figure 1 shows the basic idea [4]. An HRI is processed with a
low-pass filter (LPF) that does not cut all the high-frequency elements. The
cut-off frequency of the LPF is higher than the Nyquist frequency of LRIs. Sub-
sampling is used to create LRIs from an HRI. All LRIs are different since the
sampled pixel phases of each LRI are different. The summation of sampled pixels
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Fig. 1. SRR algorithm.

exceeds all the pixels in the HRI. For example, suppose we want to make 256 ×
256 pixel LRIs from a 512 × 512 pixel HRI. In this case, four LRIs would have
the same number of pixels as the HRI but, in fact, SRR must create more than
four 256 × 256 images to reconstruct the HRI. That is, we need a larger amount
of information than that in the HRI to reconstruct the HRI with SRR.

2.3 SR for HDTV

Super Resolution (SR) is a technology that creates a high-resolution image from
low-resolution ones [4,9,18,19,21,28]. The keyword phrase “Super resolution”
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Fig. 2. Example of LRI and HRI.

gets about 160 million hits on Google. Indeed, there are many SR proposals, but
most of them are complex algorithms involving many iterations. If the iterations
are conducted for video signals, frame memories, of the same number as the
iterations, are required. Such algorithms are almost impossible to work with
real-time hardware for the upconverted 8K content. Although non-iterative SR
was proposed [24], it only reduces aliasing artifact for a couple of images with
B-Splines. It is not sufficient to improve HDTV-to-8K upconverted blurry videos
because the upconverted videos do not have aliasing at all. SR for TV should have
low delay. Especially in live news broadcasts, conversations between announcers
in the TV studio and persons at the reporting point tend to be affected by
delays. For viewers, the superimposed time is not accurate on a TV screen if the
delay is longer than 60 seconds. For these reasons, complex SR algorithms with
iterations cannot be used in TV systems. Although a real-time SR technology
for HDTV was proposed [16,27], its resolution is worse than that of HDTV
without SR [7]. These iterations are essential for SRR to reconstruct an HRI
from LRIs. The result of the iterations must converge to the HRI. However, the
result may diverge if the cost or some other function (such as sampling phases)
is not appropriate. The number of iterations is also an issue. The time consumed
by the iterations is in proportion to their number. A small number is required for
practical applications. Yet, although considerable research has gone into finding
solutions to these problems, which are called “Fast and Robust Convergence
to HRI,” other much more important issues remain to be addressed, such as
finding the ultimate highest resolution that can be produced with SRR. If the
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convergence point of SRR is just the HRI in Fig. 1, then SRR cannot improve
the resolution beyond that of the original HRI that we began with.

Fig. 3. Example of LRI and reconstructed HRI 1 [28].

2.4 Truth of SRR

All previous studies considering SRR evaluate the peak signal to noise ratio
(PSNR) between the HRI and the reconstructed image shown in Fig. 1. They
compare their proposed PSNR with previous PSNRs. If their proposed PSNR is
better than the previous one, the result is good achievement in SRR research.
However, there is a trick in the SRR algorithm shown in Fig. 1. The algorithm
shows that the role of the LPF is very important. If the LPF does not exist, then
the process is nothing more than the breaking down of the HRI into LRIs and
then reconstructing the HRI from those LRIs. In other words, although the LRIs
are solved by minimizing the complex cost function, the process is nothing more
than creating and then solving a jigsaw puzzle with the LRIs. SRR’s resulting
resolution depends on the LPF’s characteristics, and it is necessary for LRIs
to have an aliasing signal, according to the Nyquist sampling theory of LRIs.
Aliasing is very important in SRR and appears to be based on the LPF’s char-
acteristics in the algorithm shown in Fig. 1. Aliasing does not occur if the LPF’s
cut-off frequency is sufficiently low. According to the Nyquist sampling theory,
the LPF’s cut-off frequency prior to sub-sampling should be sufficiently low to
not cause aliasing. If the LPF in Fig. 1 is eliminated, aliasing occurs; however,
this does not occur in the general combination of LPF and sub-sampling.

Figure 2(a) is an example LRI, and Fig. 2(b) shows an HRI reconstructed
from LRIs using SRR. Figure 2(a) has the typical characteristics of LRIs used
for SRR; all have aliasing. Figure 2(b) is derived by reducing the aliasing in the
LRIs that is used to reconstruct the HRI. This is the truth of SRR. It merely
reduces aliasing by using many LRIs. In other words, SRR does not work unless
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Fig. 4. Example of LRI and reconstructed HRI 2 [4].

Fig. 5. Motion blur in video.

LRIs have aliasing. This aliasing, which is good for SRR, is caused by a wide-
bandwidth LPF that does not satisfy the Nyquist sampling theory. Aliasing
does not exist if there is no HRI. As the PSNR was compared with the HRI and
the reconstructed image in previous studies considering SRR, the prepared HRI
was automatically accepted. However, previous SRR research merely compared
the PSNR with the original image (HRI) and its reconstructed jigsaw puzzle
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(reconstructed HRI). The SRR algorithm is not logical if the original HRI is
not given, which is the case in general applications, implying that SRR does not
work for general purposes. SRR has recently been applied to video. Figures 3(a)
and 4(b) are examples of video LRIs. The block-wise shapes in those figures
are caused by aliasing. Figures 3(b) and 4(b) are reconstructed HRIs with SRR.
They were created by simply reducing the aliasing from Figs. 3(a) and 4(b). If
there is no aliasing in Figs. 3(a) and 4(a), SRR cannot improve the image quality.
Block-shape aliasing does not occur in general broadcasting content because the
video camera pixels are too small to show block shapes, which indicates that
SRR does not work for broadcasting content.

Fig. 6. Original image.

Figure 5 shows the video frames of a fast-moving bullet train. A general video
of such a fast-moving object will have motion blur, as shown in Fig. 5, and none
of the aliasing shown in Figures, 2, 3(a), and 4(a). Thus, SRR does not work for
general applications. SRR only works for images and videos that have aliasing,
such as the aliasing caused by the interlace artifact, which only reduces the
vertical resolution. Iterative methods can be used to align the edges of images so
that lines with aliasing will be connected across the edges; however, because the
interlace artifact only reduces the vertical resolution, the horizontal resolution
will not be improved. Furthermore, iterative methods cannot create an HRI
from blurry LRIs. If it were possible to create high-frequency elements from low-
frequency elements, operas would have no need for soprano singers as a “soprano
singer” could be composed from the voices of many bass singers. Yet, the SRR
algorithm could have results that are analogous to creating soprano voices from
bass voices, although the voices of bass singers will never create a soprano voice.
SRR was first proposed for still images. To apply it to a video, the SRR algorithm
must treat the video frames as LRIs. However, the SRR algorithm requires one
HRI from which LRIs can be created with aliasing [4,19,28]. LRIs with aliasing
are created using iterations that are subject to a constraint condition, and the
algorithm reconstructs an HRI. Although the reconstruction of an HRI depends
on the shot objects and camerawork, video frames are not created from one
HRI. Furthermore, although motion vectors are used to adjust the phase of the
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Fig. 7. Reconstructed image.

Fig. 8. Tow dimensional spectrum of Fig. 6.

frames, they are different images. If no HRI is available to make the LRIs, there
is no guarantee that the LRIs will converge to an HRI. Moreover, SRR cannot
create an HRI from LRIs that are all the same. For example, if the camera is
completely still and shoots still-life images, SRR cannot create a high-resolution
video because every video frame is the same image without noise.

3 Analysis in the Frequency Domain

SRR is usually discussed with regard to the original and reconstructed images.
Yet, image quality is very subjective and it is not easy to distinguish image qual-
ity with images printed on sheets of paper or in PDF files. In this study, “image
quality” refers to that in the frequency domain. Figure 6 shows the original image
and Fig. 7 shows the SRR-reconstructed image. Sixteen LRIs that are a quarter
of the size of the HRI are used and iteration is conducted 100 times to recreate
Fig. 7. This is how SRR signal processing is conducted for still images, which
is the best condition for SRR since a still image has sharp edges. Although
Figs. 6 and 7 look identical, the two-dimensional Fast Fourier Transform (2D
FFT) results shown in Figs. 8 and 9 are different. Figures 7 and 9 show the



Real-Time HDTV-to-8K TV Hardware Upconverter 201

Fig. 9. Tow dimensional spectrum of Fig. 7.

Fig. 10. High and low resolution spectrum of the same video.

2D FFT results of Figs. 6 and 7, respectively. The important points of these Fig-
ures are not the strength but how widely the spectrum spreads without spaces.
The areas of the spectrum is in proportion to higher resolution and the geomet-
rical spectrum gaps cause artifacts due to the lack of the particular frequencies.
In Fig. 9, there is a rectangular-shaped null area that does not appear in Fig. 7.
This null area is caused by the size of LRIs and is the Nyquist frequency of LRIs.
Figure 7 is reconstructed with 16 LRIs using 100 iterations–ideal conditions for
SRR. Yet, despite these ideal conditions, the original image cannot be recreated.
The definition used in this study states that SR can create higher frequency ele-
ments than those contained within the original image or video [22]. Thus, on the
basis of this definition, it is necessary to discuss SR technologies in the frequency
domain.
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Fig. 11. Frequency characteristics of SR processed video.

4 SR with Non-linear Signal Processing

There are various resolution improvement technologies similar to the one pro-
posed in this paper. Here, we analyze these resolution improvement technologies
in the frequency domain. Although video is a three dimensional signal (hori-
zontal, vertical and temporal), it is scanned and can be transmitted as one-
dimensional signal with a coaxial cable. The relationship between the three-
dimensional signal and the one-dimensional signal is explained in [37]. We will
use a one-dimensional frequency model to make the discussion simple. Figure 10
is an illustration of image and video signals having typical line spectrums in the
frequency domain. Figure 10(a) shows the spectrum of a high resolution video
and Fig. 10(b) shows the spectrum of a low resolution video of the same system
of Fig. 10(a). The difference between them is only the resolution. Video signals
have special line spectrum characteristics in the frequency domain. The inter-
val between the lines is the same as the fundamental frequency regardless of
high or low resolution. The fundamental frequency of video signals is the frame
frequency.

The level of the line spectrum attenuates in proportion to the frequency, and
the level of it is the maximum at the frequency zero. High-resolution images and
video sequences have high-frequency elements. The resolution of the video is in
proportion to the highest frequency [37]. The highest frequency of NTSC video
is 4.2 MHz and that of HDTV is 24 MHz. Figure 11 shows the performance of SR
in the frequency domain. If SR really works, the SR processed video will have
high frequency elements that the original image does not have. This is shown in
Fig. 11(b), where the bold-lined frequency elements do not exist in Fig. 11(a). The
created bold-lined frequency elements in Fig. 11(b) have the same characteristics
as the original video and the fundamental frequency of them should be also ω0.
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SR with non-linear signal processing (NLSP) has been proposed as an alter-
native to the conventional image enhancement methods [6], and it has several
advantages compared with conventional SR technologies. Since it does not use
iterations or frame memories, it is sufficiently lightweight to be installed in an
FPGA (Field Programmable Gate Array) for real-time video processing. Fur-
thermore, it can create frequency elements that are higher than those of the
original image, as has been proven by performing two-dimensional fast Fourier
transform (2D-FFT) results [6]. However, it has not been used for 8K content
because the system clock of 8K is 2.3376 GHz. In this paper, we present real-
time HD/8K upconverter with NLSP to improve actual resolution of the content
upconverted to 8K from HDTV.

SRNL was proposed to solve the issues that previous SR technologies encoun-
tered [21–25]. The basic idea of NLSP is like that of the one-dimensional signal
processing shown in Fig. 12 [6]. The input is distributed to two blocks. The upper
path creates high-frequency elements that the original image does not have as
follows. The original image is processed with a high pass filter (HPF) to detect
edges. The output of the HPF is edge information that has a sign, i.e., plus or
minus, for each pixel. After the HPF, the edges are processed with a non-linear
function (NLF). If an even function such as x2 is used as the NLF, the sign
information is lost. To stop this from happening, the most significant bit (MSB)
is taken from the edge information before the NLF and restored after the NLF.
Non-linear functions generate harmonics that can create frequency elements that
are higher than those of the original image. NLSP using a number of non-linear
functions should be able to create high-frequency elements. Here, we propose
y = x2 for plus edges and y = −x2 for minus edges.

Fig. 12. NLSP algorithm [8].

It is well known that images are expanded in a Fourier series [17]. Here,
we take a one-dimensional image f(x) to make the explanation simple. f(x) is
expanded as follows.
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f(x) =
+N∑

n=−N

ancos(nω0) + bnsin(nω0) (1)

ω0 is the fundamental frequency and N means a positive integer. The HPF
attenuates low-frequency elements including the zero frequency element (DC).
We denote the output of the HPF by g(x) and it becomes as follows.

g(x) =
−M∑

n=−N

ancos(nω0) + bnsin(nω0)

+
N∑

n=M

ancos(nω0) + bnsin(nω0) (2)

M is also a positive integer and N > M . The frequency elements from −M to
M are eliminated with the HPF. DC has the largest energy in the images, and
it sometimes causes saturation whereby the images become either all white or
all black. The square function does not cause saturation by eliminating DC, and
it has the following effect. Edges are represented with sin(nω0) and cos(nω0)
functions. The square function generates sin2(nω0) and cos2(nω0) from sin(nω0)
and cos(nω0). sin2(nω0) and cos2(nω0) generate sin2(nω0) and cos2(nω0). The-
oretically it can be explained as follows. Since the most significant bit (MSB) of
the g(x) is protected, the input of the LMT for g(x) > 0 becomes the Eq. 3 and
that of the LMT for g(x) < 0 becomes the Eq. 4.

(g(x))2 =
−M∑

n=−2N

cncos(nω0) + dnsin(nω0)

+
2N∑

n=M

cncos(nω0) + dnsin(nω0) (3)

− (g(x))2 = −
−M∑

n=−2N

cncos(nω0) + dnsin(nω0)

−
2N∑

n=M

cncos(nω0) + dnsin(nω0) (4)

Here, cn and dn are coefficients of the expansion of Eq. 2. Although Eqs. 3 and 4
have the high frequency elements from (N +1)ω0) to 2Nω0), they do not exist in
the input image, Eq. 1. Since these high frequency elements are created with the
non-linear function, some of them are too large and need to be processed with
LMT. After LMT processing, the created high frequency elements are added to
the input with ADD. These NLFs create frequency elements that are two times
higher than the input, and they can be used to double the size of the images
horizontally and vertically, such as in the upconversion from HD to 4K.
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Fig. 13. Block diagram of real-time hardware [8].

It is necessary to apply NLSP horizontally and vertically, since images and
videos are two-dimensional signals. Figure 13 is a block diagram of the real-time
video processing. The input is distributed to two paths. The output of the upper
line, the delay path, is the same as the input. The signal is delayed until the signal
processing on the other paths ends. The bottom line includes a two-dimensional
low pass filter (2D-LPF) and a parallel NLSP part. The 2D-LPF block decreases
noise in video because noise has horizontal and vertical high frequency elements.
Figure 14 shows the two-dimensional frequency characteristics of the 2D-LPF.
2D-LPF passes the checker marked area and eliminates the diagonal frequency
elements, i.e., the four corners shown in Fig. 14. NLSP creates horizontal high
frequency elements and vertical high frequency elements. Both horizontal and
vertical high frequency, diagonal, elements are processed with horizontal NLSP
and vertical NLSP separately. If these frequency elements are processed with
NLSP, the diagonal frequency elements are emphasized to excess.

The human visual system is not so sensitive to the horizontal and vertical
high-frequency elements, i.e. the four corners shown in Fig. 14 [23]. This means
these frequency elements in the NLSP video do not affect the perceived reso-
lution. Thus, to maintain the original diagonal resolution, the original diagonal
frequency elements are sent through the delay line and added to the output.
After the 2D-LPF the signal is provided into two paths. The upper path is the
horizontal NLSP, and the lower path is the vertical NLSP. The three video paths
are added together at the end to create the NLSP video. This parallel signal pro-
cessing is fast. It reduces the delay from input to output, as discussed in Sect. 1,
and it can work at 60 Hz. Figure 15 shows the NLSP hardware. It up-converts
full to 4K , and it processes the up-converted 4K video with NLSP to increase
the resolution at 60 Hz. The NLSP algorithm is installed in the FPGA, which is
located under the heat sink. Although there are many parts on the circuit board,
most of them are input and output interface devices and electric power devices.

Figure 16 shows an image processed with the NLSP hardware shown in
Fig. 15. Figure 16(a) is just an enlargement from HD to 4K, and it looks blurry.
Figure 16(b) shows the image processed with NLSP after the enlargement. Its
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Fig. 14. Characteristics of 2D-LPF [8].

Fig. 15. Appearance of real-time hardware [8].

resolution is clearly better than that of Fig. 16(a). Figure 16(c) and (d) are the
2D-FFT results of Fig. 16(a) and (b) respectively. In Fig. 16(c) and (d), the
horizontal axis the the horizontal frequency and the vertical axis the vertical
frequency. HD Fig. 16(d) has horizontal and vertical high-frequency elements
that Fig. 16(c) does not have. This shows that real-time hardware works and it
produced the high frequency elements that the original image does not possess.

5 NLSP Focusing Effect

Focus is an important factor for creating finely detailed content. Professional
cameras do not have auto-focus functions because professional camera persons
have the ability to adjust the fine focus and use complex focus controls on the
HD cameras. It is very difficult to manually adjust the focus of 8K cameras using
only a small viewfinder, and if the focus is off, the 8K format cannot live up to
its full potential. Because 8K is developed for broadcasting, 8K cameras are
equipped with zoom lenses as well as HD cameras. The focus of zoom lenses is
less accurate than that of single-focus lenses. A zoom lens makes it more difficult
to accurately adjust the focus. HD-to-8K upconverted videos are blurry and
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(a) 4K image enlarged from HD (b) 16(a) with NLSP

(c) 2D-FFT result of Figure 16(a) (d) 2D-FFT result of Figure 16(b)

Fig. 16. Image processed with real-time NLSP [8].

their characteristics are similar to those of out-of-focus videos. It is important
to note that NLSP has a focusing effect. Figure 17(a) shows a blurry image. The
original image is crisp (it is part of a test pattern), and a low pass filter (LPF) is
used to blur the image. Figure 17(b) shows the result of processing the image in
Fig. 17(a) with the NLSP hardware. Comparing these figures, we observe that
the resolution of the image in Fig. 17(b) is better than that of Fig. 17(a) and the
focus looks adjusted. This effect is owing to the characteristics of NLSP. NLSP
can generate high-frequency elements that the original image does not have, and
these high-frequency elements have a focusing effect. The focusing effect works
for the unconverted blurry 8K to improve the resolution.

6 Real-Time HD-to-8K Upconverter

6.1 HD to 8K Upconverter with NLSP

Figure 18 shows a block diagram of the HD-to-8K upconverter. The input, which
is full HD, is shown on the left side and the 8K output is shown on the right side
of Fig. 18. The HD-to-8K upconversion is processed in two steps: full HD-to-4K
and 4K-to-8K upconversion. The left half of Fig. 18 shows the block diagram
of the upconverter from full HD to 4K, which uses two dimensional Lanczos
interpolation [2]. The upconverted 4K video from HD is blurry and is processed
with NLSP to improve resolution. The real-time hardware for full HD to 4K
upconversion with NSLP is shown in Fig. 20.
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(a) Blurry image

(b) Focused image with NLSP

Fig. 17. Focusing effect [8].

Fig. 18. Block diagram of full HD to 8K upconverter with NLSP [8].

The latter signal processing of the image in Fig. 18 achieved via upconversion
from 4K to 8K using NLSP. The upconverted 4K frame comprises four full HD
frames, which are divided as shown in Fig. 19. Each HD frame is processed
with the same unit shown in Fig. 20, and the four 4K frames with NLSP are
created.These 4K frames are combined to create an 8K frame with NLSP. The
real-time hardware for the 4K-to-8K upconversion with NLSP is shown in Fig. 22,
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Fig. 19. Divided 4K frame with full HD [8].

Fig. 20. Real-time full HD to 4K upconverter with NLSP [8].

which includes four of the full HD-to-4K upconverter units shown in Fig. 20. The
other units are the divider and combiner units shown in Fig. 18.

6.2 Resolution of the 8K Upconverted Image

Figure 21 shows parts of example 8K images upconverted using the real-time
hardware shown in Figs. 20 and 22. The images shown in Fig. 21(a) and (c) are
blurry because the NLSP option is off. The images in Fig. 21(b) and (d) are
created with the NLSP option on. The resolution of these images is better than
of the ones in Fig. 21(a) and (c). The only difference between them is whether the
NLSP was used or not. Note that NLSP improves the resolution of upconverted
8K content. The focus effect discussed in Sect. 5 works, and it improves the
resolution of the blurry image. The discussed hardware can upconvert images
from full HD to 8K in real-time and will be useful for 8K broadcasting. It can
address the problems of insufficient 8K content and is capable of upconverting
HDTV content of varying quality to 8K.

Currently the square function is applied to create the high frequency elements
and it works. However, we should continue to try and find a better nonlinear
function than the square function to improve image quality. 8K is a broadcasting
system and there are various kinds of content such as news, drama, variety
shows, sports and others. HDTV-to-8K upconverter have to process this content.
Upconversion tests for the various content should be done before 8K broadasting
becomes operational.
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(a) HD to 8K upconverted image 1 (b) HD to 8K upconverted image 1 with
NLSP

(c) HD to 8K upconverted image 2 (d) HD to 8K upconverted image 2 with
NLSP

Fig. 21. Upconverted images with real-time HD-to-8K upconverter [8].

Fig. 22. Real-time 4K to 8 K upconverter with NLSP [8].
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6.3 Result

Upconverted videos are blurry, and this is a serious issue for HD-to-8K conver-
sion. Although SR algorithms have been proposed, they are complex and cannot
cope with real-time videos, particularly high-speed 8K videos. An algorithm for
an HD-to-8K upconverter with NLSP was proposed and real-time hardware was
developed. The converter creates high-frequency elements that the upconverted
blurry video does not possess and produces high-resolution 8K content. This
converter will be helpful for fixing the problems of insufficient 8K content and
mobile news gathering for 8K broadcasting. Searching for a better nonlinear
function and testing it with various content should be the primary focus forn
the near future.
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Abstract. The primary challenge for removing haze from a single image
is lack of decomposition cues between the original light transport and
airlight scattering in a scene. Many dehazing algorithms start from an
assumption on natural image statistics to estimate airlight from sparse
cues. The sparsely estimated airlight cues need to be propagated accord-
ing to the local density of airlight in the form of a transmission map,
which allows us to obtain a haze-free image by subtracting airlight from
the hazy input. Traditional airlight-propagation methods rely on ordi-
nary regularization on a grid random field, which often results in iso-
lated haze artifacts when they fail in estimating local density of airlight
properly. In this work, we propose a non-local regularization method
for dehazing by combining Markov random fields (MRFs) with nearest-
neighbor fields (NNFs) extracted from the hazy input using the Patch-
Match algorithm. Our method starts from the insightful observation
that the extracted NNFs can associate pixels at the similar depth. Since
regional haze in the atmosphere is correlated with its depth, we can allow
propagation across the iso-depth pixels with the MRF-based regulariza-
tion problem with the NNFs. Our results validate how our method can
restore a wide range of hazy images of natural landscape clearly without
suffering from haze isolation artifacts. Also, our regularization method
is directly applicable to various dehazing methods.

Keywords: Dehazing · Non-local regularization · Image restoration

1 Introduction

The atmosphere in a landscape includes several types of aerosols such as haze,
dust, or fog. When we capture a landscape photograph of a scene, often thick
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aerosols scatter light transport from the scene to the camera, resulting in a
hazy photograph. A haze-free image could be restored if we could estimate and
compensate the amount of scattered energy properly. However, estimating haze
from a single photograph is a severely ill-posed problem due to the lack of the
scene information such as depth.

An image processing technique that removes a layer of haze and compensates
the attenuated energy is known as dehazing. It can be applied to many out-
door imaging applications such as self-driving vehicles, surveillance, and satellite
imaging. The general dehazing algorithm consists of two main processes. We first
need to approximate haze initially by utilizing available haze clues based on a
certain assumption on natural image statistics, such as a dark channel prior [2].
In this stage, most of dehazing algorithms tend to produce an incomplete trans-
mission map from the hazy image. Once we obtain rough approximation of haze,
we need to propagate the sparse information to the entire scene to reconstruct
a dense transmittance map used for recovering a haze-free image.

Difficulty of dehazing arises from the existence of ambiguity due to the lack of
the scene information. First, the initial assumption on image statistics on natural
colors in particular is insufficient to cover the wide diversity of natural scenes
in the real world, resulting in incomplete haze estimation. No universal image
statistics on natural colors can handle the dehazing problem. Moreover, as shown
in Fig. 1, state-of-the-art propagation algorithms with a common grid random
field often suffer from haze-isolation artifacts [3–5]. Meanwhile, the amount of
haze in the atmosphere at each pixel is determined by its depth. In order to
handle abrupt changes of haze density, we need the scene depth information,
even though it is unavailable in single-image dehazing.

In this paper, we propose a non-local regularization method for dehazing that
can propagate sparse estimation of airlight to yield a dense transmission map
without suffering from the typical isolation problem (Fig. 1). Our regularization
approach is developed by combining Markov random fields (MRFs) with nearest-
neighbor fields (NNFs) using the PatchMatch algorithm [6]. Our main insight is
that the NNFs searched in a hazy image associate pixels at the similar depth.
Since no depth information is available in single-image dehazing, we utilize the
NNF information to infer depth cues by allowing non-local propagation of latent
scattered light, which is exponentially proportional to depth [7]. To the best of
our knowledge, this approach is the first work that combines MRF regularization
with NNFs for dehazing. This proposed regularization method can be used with
any other dehazing algorithms to enhance haze regularization.

2 Related Work

Previous works on dehazing can be grouped into three categories: multiple image-
based, learning-based and single image-based approaches.

Multiple Image-Based Dehazing. Since removing haze in the atmosphere is
an ill-posed problem, several works have attempted to solve the problem using
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Fig. 1. Comparison of dehazing results using (a) regularization of haze using traditional
MRFs commonly used in state-of-the-art dehazing algorithms [3–5] and (b) our regu-
larization using MRFs with iso-depth NNFs (Insets: corresponding transmission maps).
The proposed method for single-image dehazing can propagate haze more effectively
than traditional regularization methods by inferring depth from NNFs in a hazy image.
Images courtesy of Kim and Kim [1]. (Color figure online)

multiple input images, often requiring additional hardware. Schechner et al. cap-
ture a set of linearly polarized images. They utilize the intensity changes of the
polarized lights to infer the airlight layer [8]. Narasimhan et al. [7,9] employ
multiple images with different weather conditions to restore the degraded image
using an irradiance model. Kopf et al. [10] remove haze from an image with
additionally known scene geometry, instead of capturing multiple images. These
haze formation models stand on the physics of light transport to provide sound
accuracy. However, these applications could be limited at the cost of acquiring
multiple input images.

Learning-Based Dehazing. Learning-based methods have been proposed
to mitigate the ill-posed dehazing problem using a trained prior knowledge.
From training datasets, they attempt to earn a prior on natural image statis-
tics to factorize the haze layer and the scene radiance from the hazy image.
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Tang et al. [11] define haze-relevant features that are related to the properties of
hazy images, and train them using the random forest regression. Zhu et al. [12]
obtain the color attenuation prior using supervised learning. They found that
the concentration of haze is positively correlated with the difference between
brightness and saturation, and they train a linear model via linear regression.
However, no general statistical model can predict the diverse distributions of
natural light environments; hence, they often fail to restore hazy-free images
that are not similar to the trained dataset.

Single Image-Based Dehazing. Owing to the ill-posedness of the dehazing
problem, single image-based methods commonly rely on a certain assumption
on statistics of natural images. Most prior works have made an assumption on
the statistics of natural scene radiance [2,4,13–16]. Tan [13] and Tarel and Hau-
tiere [14] restore visibility by maximizing local contrast, assuming that clean
color images have a high contrast, but this causes overly saturated results. He
et al. [2] exploit image statistics where a natural image in the sRGB color space
should include a very low intensity within a local region. However, it often over-
estimates the amount of haze if there is a large area having bright pixels. Nishino
et al. [15] employ scene-specific priors, a heavy-tailed distribution on chromatic-
ity gradients of colors of natural scenes, to infer the surface albedo, but they
also often produce over-saturated results.

Developing the natural image prior further, Fattal [4] assumes that in the
sRGB space, the color-line of a local patch within a clear image should pass
through the origin of the color space. This can yield a clear and naturally-looking
result, but it requires per-image tweaking parameters such as the gamma value
and the manual estimation of the atmospheric light vector. Li et al. [17] suggest a
nighttime dehazing method that removes a glow layer made by the combination
of participating media and light source such as lamps. Recently, a non-local
transmission estimation method was proposed by Berman et al. [5], which is
based on the assumption that colors of a haze-free image can be approximated
by a few hundred distinct colors forming tight clusters in the RGB space.

In addition, an assumption on light transport in natural scenes is also used.
Fattal assumes that shading and transmission are statistically independent [3],
and Meng et al. [18] impose boundary conditions on light transmission. In partic-
ular, our airlight estimation follows the traditional approach based on dimension-
minimization approach [3], which allows for robust performance in estimating
airlight.

Haze Regularization. Most single-image dehazing methods estimate per-pixel
haze using a patch-wise operator. Since the operator often fails in a large portion
of patches in practice, regularizing sparse haze estimates is crucial to obtain a
dense transmission map for restoring a haze-free image. Grid Markov random
fields are most commonly used in many dehazing algorithms [3,5,13,15,19], and
filtering methods are also used, for instance, matting Laplacian [2], guided fil-
tering [20], and a total variation-based approach [14,18]. These regularization
methods only account for local information, they often fail to obtain sharp depth-
discontinuity along edges if there is an abrupt change in scene depth.
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Recently, Fattal [4] attempts to mitigate this isolation problem by utilizing
augmented Markov random fields, which extend connection boundaries of MRFs.
However, this method does not search neighbors in every region in an image since
only pixels within a local window are augmented. For this reason, the augmented
MRFs cannot reflect all non-local information in the image, and in some cases,
isolation artifacts still remain. Berman et al. [5] non-locally extend the boundary
in estimating haze; however, they still regularize an initial transmission map by
using Gaussian MRFs (GMRFs) with only local neighbors. As a result, severe
isolation problems occur in a region where there is an abrupt change of scene
depth. In our regularization method, we extend neighbors in MRFs with NNFs
to allow non-local propagation across iso-depth pixels to obtain sharp edge-
discontinuity when inferring latent transmission values.

3 Initial Estimation of Haze

We first estimate the initial density of haze following a traditional dimension-
reduction approach using linear subspaces [3,7]. To help readers understand the
formulation of the dehazing problem, we briefly provide the foundations of the
traditional haze formation model.

Haze Formation Model. Haze is an aerosol that consists of ashes, dust, and
smoke. Haze tends to present a gray or bluish hue [7], which leads to decrease of
contrast and color fidelity of the original scene radiance. As the amount of scat-
tering increases, the amount of degradation also increases in light transport. This
phenomenon is defined as a transmission function that represents the portion of
light from the scene radiance that is not affected by scattering in participating
media.

The relationship between the scattered light and the attenuated scene radi-
ance has been expressed as a linear interpolation via a transmission term com-
monly used in many dehazing algorithms [3,4,7,9]:

I (x) = t (x) J (x) + (1 − t (x)) A, (1)

where I(x) is the linear signal intensity at pixel x, J(x) is unknown scene radi-
ance, t(x) is the transmission ratio, describing the portion of remaining light
when the reflected light from a scene surface reaches to the observer through the
medium, and A is a global atmospheric vector, which is unknown. The atmo-
spheric vector A represents the color vector orientation and intensity of atmo-
spheric light in the linear sRGB color space, and along with the interpolation
term (1 − t (x)), the right additive term in Eq. (1) defines the intensity of airlight
at an arbitrary pixel x. Additionally, the atmospheric vector is independent of
scene locations, i.e., the atmospheric light is globally constant.

The amount of scattering is closely related to the distance that light travels,
i.e., the longer light travels, the more scattering occurs. Therefore, the transmis-
sion decays as light travels. Suppose that haze is homogeneous; this phenomenon
then can be written as follows: t (x) = e−βd(x), where β is a scattering coefficient
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of the atmosphere [9] that controls the amount of scattering, and d(x) is the
scene depth at the pixel x.

The goal of haze removal is to estimate the transmission ratio t and the
atmospheric vector A so that scene radiance J can be recovered from the trans-
mission t and the atmospheric vector A as follows:

J (x) =
I (x) − (1 − t (x)) A

max (ε, t (x))
, (2)

where ε is a small value to prevent division by zero.

Linear Color Space. As shown in Eq. (1), the hazy image formation is the
linear combination of a scene radiance and haze factor. Dehazing is a process
to perform subtraction from the input intensity by the amount of haze. The
required condition for the process is that the pixel intensity must be linearly
proportional to the incident radiance based on physics, which is only valid in
the linear sRGB color space. However, gamma correction is already baked in the
pixel intensities in general color images. If one subtracts the haze factor from the
original intensity in the nonlinear sRGB space, dehazing results appear incon-
sistent with different levels of pixel intensities. Consequently, manual tweaking
parameters are often required, as in Fattal [4]. Different from existing dehazing
methods [2–4,17], we first perform inverse gamma correction to linearize the pixel
values before recovering the scene radiance; i.e., we use a linearized image IL by
applying a power function with an exponent of the standard display gamma to
an sRGB value: I(x) = {I ′(x)}γ , where I ′(x) is a non-linear RGB value, and γ
is a display gamma (e.g., γ = 2.2 for the standard sRGB display), instead of I
during the transmission estimation and regularization processes, and we then
perform gamma correction for display.

Haze Estimation. Since airlight is energy scattered in air, airlight tends to
be locally smooth in a scene, i.e., local airlight remains constant in a similar
depth. In contrast, the original radiance in a scene tend to vary significantly,
naturally showing a variety of colors. When we isolate the scene radiance into a
small patch in an image, the variation of scene radiances within a patch tends to
decrease significantly to form a cluster with a similar color vector, assuming that
the real world scene is a set of small planar surfaces of different colors. Then, one
can estimate a transmission value with certain natural image statistics within a
patch based on the local smoothness assumption on scene depths.

Following this perspective of the traditional approach [3], we also define a
linear subspace that presents local color pixels in the color space. A linear sub-
space in each patch comprises two bases: a scene radiance vector J(x) at the
center pixel x and a global atmospheric vector A. In this space, a scene depth
is piecewise smooth, and the local pixels share the same atmospheric vector.
Now we can formulate dehazing as finding these two unknown basis vectors,
approximating the transmission value t(x) that is piecewise smooth due to the
local smoothness of a scene depth. Figure 2 depicts the estimation process for an
overview.
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Fig. 2. (a) Extracting a patch from a hazy image. I(Ω) is a set of linearized color
pixels in patch Ω that has a center pixel of x. The white dot indicates the center
pixel x. (b) We initially estimate the amount of haze using linear subspaces [3,7].
A is an atmospheric vector of the image (a), I (x) is the linearized center pixel x
depicted as the white dot, and J (x) is the scene radiance vector of the pixel I (x).
Pixel intensity I (x) is a linear interpolation of the vector A and J (x), and hence lies
on the linear subspace [the blue plane in (b)] spanned by those two vectors. The red
dots describe pixels extracted from I (Ω). These pixels are projected onto vector A
to obtain a marginal distribution with respect to A. The red arrow from the cluster
denotes the amount of airlight that is determined from the minimum value of the
marginal distribution. Images courtesy of Kim and Kim [1]. (Color figure online)

Atmospheric Vector Estimation. Airlight is a phenomenon that acts like a
light source, which is caused by scattering of participating media in the atmo-
sphere [7]. The atmospheric vector represents the airlight radiance at the infinite
distance in a scene, i.e., the color information of airlight itself. Therefore, the
atmospheric vector does not include any scene radiance information, and it only
contains the airlight component. The region full of airlight is the most opaque
area in a hazy image. We follow a seminal method of airlight estimation by He
et al. [2]. The atmospheric vector A is estimated by picking up the pixels that
have the top 0.1% brightest dark channel pixels and then choosing the pixel
among them that has the highest intensity in the input image. However, if there
are saturated regions such as sunlight or headlights, maximum filtering of the
dark channel could be incorrect since those regions might have the highest (sat-
urated) dark channel. Also, we assume that the most opaque region is the most
brightest within an image, and we therefore discard the pixels that are within
aforementioned saturated regions. We then select the 0.1% pixels among the rest
as He et al. [2]’s method does, so that we can estimate the atmospheric vector
consistently. We subsequently average the chosen pixels to reject noise.

Transmission Estimation. We first assume that transmission is piecewise
smooth. In Eq. (1), the portion of haze at a pixel x is determined by the
term (1 − t (x)) that indicates the amount of haze to be removed. We deter-
mine the amount of haze from given color signals within a patch. Suppose the
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given color signals in each patch are linear combinations of two unknown bases,
J and A, that form a linear subspace. If we project the given pixels onto the
atmospheric vector A, we can estimate the contribution of the haze signal mixed
into the input signals in the patch.

Supposing IA(Ω) is a set of scalar projections of color vectors I(Ω) onto an
atmospheric vector A in patch Ω (Fig. 2), where the pixel x is located at the
center, then it can be written as following Fattal’s method [3]:

IA (Ω) = I (Ω) · A

‖A‖ , IA (Ω) ∈ R
1×|Ω|. (3)

We assume the airlight within a patch to be constant while the scene radiance
might vary. To focus only on the airlight component, it is necessary to obtain a
marginal distribution of the surrounding pixels with respect to the basis vector A,
as shown in Fig. 2(b).

The marginal distribution IA (Ω) describes the histogram of airlight compo-
nents within a patch. This distribution would have had a very low minimum
value if it had not been influenced by piecewise constant airlight. However, if we
take the minimum projected value, there could be a large chance to take an out-
lying value as the minimum. We use the i-th percentile value from the projected
pixel distribution to reject outliers effectively to achieve robust performance:

Imin
A (Ω) = Pi

k∈Ω
(IA (k)) , Imin

A (Ω) ∈ R
1, (4)

where Pi represents an i-th percentile value (i = 2).
The minimum percentile scalar projection onto an atmospheric vector cor-

responds to the amount of haze of a pixel from its patch, and thus the min-
imum projection corresponds to the haze component part in Eq. (1), which is
(1 − t (x)) ← Imin

A (Ω).
Additionally, projection onto the atmospheric vector requires two bases (a

pixel and an atmospheric vectors) to be orthogonal. However, pixels within a
patch are not necessarily orthogonal to the atmospheric vector, so projection
needs to be compensated for non-orthogonality. If a color vector has a small
angle with its atmospheric vector, then its projection will have a larger value
due to the correlation between the two vectors. We attenuate Imin

A by a function
with respect to the angle between a pixel vector and an atmospheric vector that
is given by

t (x) = 1 − f
(
θ̄
) · Imin

A (Ω) , (5)

where θ is a normalized angle between a pixel vector and an atmospheric vector
within [0, 1]. The attenuation function f () is given by

f
(
θ̄
)

=
e−kθ̄ − e−k

1 − e−k
, (6)

where the function has a value of [0, 1] in the range of θ̄. In this work, we
set k = 1.5 for all cases. This function compensates transmission values by
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attenuating the value Imin
A since the function has a value close to 1 if θ̄ has a

small value. See Fig. 3(c). Figure 4 shows the impact of our attenuation function.
Our attenuation prevents over-estimation of transmission where orthogonality
between the atmospheric vector and a color vector does not hold: Thus, we can
avoid over-saturated dehazed results.

Fig. 3. (a) A hazy input image. (b) Each single pixel from the red and blue boxes is
plotted in the RGB space along with the atmospheric vector A. J1 and J2 in each plot
correspond to the two pixels extracted. (c) The attenuation function defined as Eq. (6)
is plotted as above. The red and blue dots indicate the amount of attenuations of the
red and blue patches. This plot shows that the amount of attenuation increases as an
angle between a color vector and an atmospheric vector decreases. Images courtesy of
Kim and Kim [1]. (Color figure online)

The size of a patch is crucial in our method. If the size is too small, then
the marginal distribution does not contain rich data from the patch, resulting
in unreliable estimation such as clamping. On the contrary, an excessively large
patch might include pixels in different scene depth and our estimation stage takes
the minimum value in the marginal distribution, and hence the transmission
estimate will be overestimated. In our implementation, we use patches of 15-by-
15 pixels and it showed consistent results regardless of the size of an image.

Removing Outliers. While our transmission estimation yields reliable trans-
mission estimates in most cases, however, there are a small number of cases
that does not obey our assumption. We take them as outliers and mark them
as invalid transmission values, and then interpolate them in the regularization
stage (see Sect. 4).

Distant regions in an image such as sky, and objects whose color is grayish
have a similar color of haze. In the RGB color space, the angle between an
atmospheric vector and the color vector of a pixel in those regions is very narrow
and the image pixel’s luminance is quite high. In this case, unreliable estimation
is inevitable since there is a large ambiguity between the color of haze and scene
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radiance. As a result, unless we do not reject those regions, the transmission
estimate will be so small that those regions will become very dim in turn. For
this reason, we discard the transmission estimates, where the angle between an
image pixel and an atmospheric vector is less than 0.2 rad, the pixel’s luminance
(L∗) is larger than 60 in the CIELAB space, and the estimated transmission
value is lower than a certain threshold: 0.4 for scenes having a large portion of
distant regions and 0.1 for others.

When estimating an atmospheric light, we assumed that the most opaque
region in an image is the brightest area of the whole scene. However, pixels
brighter than the atmospheric light can exist due to very bright objects such as
direct sunlight, white objects, and lamps in a scene. Those pixels do not obey
our assumption above, and hence this leads to wrong transmission estimation.
Therefore, we discard pixels whose luminance is larger than the luminance of
the atmospheric light.

4 Non-local Regularization Using Iso-Depth Neighbor
Fields

Once we calculate the initial estimates of transmission for every pixel, we filter
out invalid transmission values obtained from extreme conditions. The transmis-
sion estimation and outlier detection stages might often yield incomplete results
with blocky artifacts. We, therefore, need to propagate valid transmission values
in the image.

MRF Model. As we mentioned above, the transmission is locally smooth.
Therefore, in order to obtain a complete transmission map having sharp-edge
discontinuities, we need to propagate the incompletely estimated transmission
map using Markov random fields. The probability distribution of one node in an
MRF is given by

p
(
t (x)

∣
∣t̂ (x)

)
= φ

(
t (x) , t̂ (x)

)
ψ (t (x) , t (y)) , (7)

where t (x) is a latent transmission variable at pixel x, t̂ (x) is an initially esti-
mated transmission value (see Sect. 3), φ() is the data term of the likelihood
between t(x) and t̂(x), and ψ() is a smoothness prior to relate latent transmis-
sion t(x) with neighboring transmission t(y), where y is a neighboring pixel of x.
While the data term φ() describes the fidelity of observations by imposing a
penalty function between the latent variable and the observed value, the regu-
larization term ψ() enforces smoothness by penalizing the errors between one
latent variable and its neighboring variables.

The data term φ() is given by

φ
(
t (x) , t̂ (x)

)
= exp

(

−
(
t (x) − t̂ (x)

)2

σt̂(Ω)2

)

, (8)

where σt̂(Ω) is the variance of observation values t̂ within patch Ω that has the
center at pixel x. See Fig. 5. The data term models error between a variable
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and observation with in-patch observation variance noise via a Gaussian distri-
bution. The in-patch variance of observation values implies that the greater the
variance of in-patch observation is, the more uncertain the observation values
are, resulting in giving less influence from the data term on the distribution.

The regularization term ψ() is written as

ψ (t (x) , t (y)) =
∏

y∈Nx

exp

(

− (t (x) − t (y))2

‖I (x) − I (y)‖2
)

, (9)

where I () is a linearized pixel intensity of an image, and pixel y is in a set
of neighbors Nx of pixel x. The regularization term encourages smoothness
among one variable and its neighboring variables by penalizing pairwise dis-
tances between them, where the distribution of the distances follows a Gaus-
sian distribution. If (t (x) − t (y))2 is large, then it indicates that the distance
between t (x) and its neighbor t (y) is large, and hence the cost from the regular-
ization term will also become large, which enforces strong smoothness between
them. ‖I (x) − I (y)‖2 in the denominator of the prior term controls the amount
of smoothness by exploiting information from an input image. This property
implies that if two image pixels are similar, then their transmission values are
likely to be similar as well. On the contrary, it gives sharp-edge discontinuity
in transmission values along edges since the value of the denominator becomes
large when the difference between two pixels is large.

In fact, the probability distribution of an MRF over the latent variable t
is modeled via the Gaussian distribution. In this case, the MRF is formalized
by using a Gauss-Markov random field (GMRF), which can be solved by not
only using computationally costly solvers, but also by a fast linear system solver
[3,21].

Finally, we formulate a cost function by taking the negative log of the pos-
terior distribution [Eq. (7)] following Fattal’s method [3,4], which is written by

E (t) =
∑

x

⎧
⎨

⎩

(
t (x) − t̂ (x)

)2

σt̂(Ω)2
+

∑

y∈Nx

(t (x) − t (y))2

‖I (x) − I (y)‖2

⎫
⎬

⎭
. (10)

The regularization process is done by minimizing the cost function, which is
solved by differentiating the function with respect to t and setting it to be zero.

Iso-Depth Neighbor Fields. In conventional grid MRFs, a prior term [Eq. (9)]
associates adjacent four pixels as neighbors. However, pixels in a patch lying on
an edge may be isolated when the scene surface has a complicated shape. In
Fig. 5(a), the leaves in the left side of the image have a complicated pattern
of edges, and the bricks lie behind the leaves. If we model a grid MRF on the
image, then pixels on the tip of the leaves will be isolated by the surrounding
brick pixels. In this case, smoothness of the leaf pixels will be imposed mostly
by the brick pixels, where there is a large depth discontinuity between them.
In other words, a large scene depth discrepancy exists in the patch, and thus if
some pixels lying on the edge are only connected to their adjacent neighbors, the
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Fig. 4. Impact of our attenuation term in transmission estimation. As the red arrows
indicate, our attenuation term prevents over-estimation of transmission which results
in over-saturation. (Color figure online)

Fig. 5. (a) The picture shows some sampled NNFs that associate pixels having similar
scene depths. The line with the same color denotes association of pixels in the same
NNF. (b) An MRF model of the node x from the patch in (a) associated with adjacent
four neighbors and distant neighbors in the NNF. Since the node x is located in the
end point of the leaf, its adjacent pixels have very different transmission values due to
a large depth discontinuity. As (a) shows, the neighbors connected with the same NNF
have very similar scene depths, and hence they give a more accurate regularization cue
than the adjacent neighbors do. Images courtesy of Kim and Kim [1]. (Color figure
online)
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prior term will enforce wrong smoothness due to the large depth discrepancy. As
a result, those regions will be overly smoothed out due to the wrong connection
of neighbors.

Algorithm 1. Dehazing via Non-Local Regularization.

Require: an image I
Ensure: a result image J and a transmission map t
1: Â ← atmosphericVectorEstimate(I)
2: {IL, A} ← inverseGammaCorrect({I, Â})
3: for pixels x = 1 to n do
4: IA (Ω) ← IL (Ω) · A

‖A‖
5: Imin

A (Ω) ← Pi
k∈Ω

(IA (k))

6: t′ (x) ← 1 − f
(
θ̄
) · Imin

A (Ω)

7: t̂ (x) ← outlierReject(t′ (x) , A, IL (x))
8: end for
9: NNF ← PatchMatch(I)

10: t ← regularize(NNF, t̂, I)
11: JL ← (I − (1 − t) A) /t
12: J ← gammaCorrect(JL)

We investigate neighbors extracted from a nearest-neighbor field (NNF) using
the PatchMatch algorithm and found that the NNF associates pixels at similar
scene depths. This insightful information gives a more reliable regularization
penalty since the neighboring nodes in the NNF are likely to have similar trans-
mission estimates. We validate our method through evaluation using syntheti-
cally generated hazy images along with their ground truth depth maps. Figure 6
shows the synthetic hazy scenes and their corresponding depths. We compute the
absolute depth difference between a ground truth depth pixel and its iso-depth
pixels associated by NNFs. The histograms in Fig. 6 show that the NNFs link
one pixel to others having similar depth values. Thus, we add more neighbors
belonging to the same NNF to the smoothness term and perform statistical infer-
ence on the MRF along with them. We note that these long-range connections in
regularization are desirable in many image processing applications, addressed by
other works [4,22]. After regularization, we use the weighted median filter [23]
to refine the transmission map. Algorithm1 summarizes our dehazing algorithm
as an overview.

5 Results

We implemented our algorithm in a non-optimized MATLAB environment
except the external PatchMatch algorithm [6], and processed it on a desktop
computer with Intel 4.0 GHz i7-4790K CPU and 32 GB memory. For the case of
the house image of resolution 450 × 440 shown in Fig. 1(b), our algorithm took
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Fig. 6. Images (a) and (d) are synthetically generated hazy scenes, and images (b)
and (e) are their ground truth depth maps. We computed the absolute transmission
difference between a transmission value of a pixel and its iso-depth pixel’s transmission
values associated by PatchMatch [6]. Plots (c) and (f) are the distributions of the
differences. Plot (c) shows that the portion of the absolute difference below 0.2 occupies
86% of entire NNFs, while Plot (f) shows the case of 81%.

6.44 s for running the PatchMatch algorithm to seek 17 neighbors, 8.32 s to esti-
mate an atmospheric vector, transmission values and rejecting outliers, 43.43 s
for our regularization stage, and 0.65 s for running the weighted median filter
and recovering the scene radiance, taking approximately 58.84 s in total. We
evaluated our algorithm with a large number of outdoor hazy images obtained
from Fattal’s method [4] to prove robustness, and we also present comparisons
with state-of-the-art dehazing methods. Refer to the supplemental materials for
more results.

Regularization. We compare results of our method with those of state-of-the-
art methods in terms of regularization. Berman’s method [5] regularizes initial
transmission estimates with a grid GMRF as shown in the second columns in
Fig. 7. Due to the lack of non-local information in regularization, certain regions
suffer from the haze isolation problem as mentioned above. Other than using a
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grid MRF, Fattal’s method [4] takes an augmented GMRF model for regular-
ization, which extends neighbor fields within a local window. However, it does
not connect more neighbors for all pixels due to time complexity. As a result,
certain regions are not fully recovered from the haze isolation problem. Figure 7
validates that our method successfully removes haze even from a scene having
abrupt depth changes with complicated patterns.

Figure 8 shows the intermediate stages in our regularization process of trans-
mission (d)–(g), along with our result of the house scene (c). We start our regular-
ization from Fig. 8(d) that has outliers [represented as black pixels in Fig. 8(d)].
In particular, Fig. 8(e) and (f) compare the impact of NNFs in the MRF regu-
larization. When we regularize the initial estimate with only GMRFs, certain
regions with complex scene structures are over-smoothed due to the wrong
smoothness penalty as Fig. 8(e) shows. We account for additional neighbors from
NNFs to obtain a clearer transmission map shown in Fig. 8(f). Figure 8(g) shows
the final transmission map that we refine with a weighted median filter [23].

We also compare our regularization method with representative matting
methods: the matting Laplacian method [24] and the guided filter method [20]
in Fig. 9. While we use the guide image as just a guide to smooth and enforce
sharp gradient along edges on transmission estimates, both methods are based
on the assumption that an output and an input guidance form a linear relation-
ship. As described in Sect. 3, scene radiance varies largely while transmission
does the opposite. Consequently, the two methods follow the behavior of the
scene radiance, which results in distorting the given estimates. As a result, our
regularization method yields an accurate transmission map with clear-edge dis-
continuities while the others overestimate the transmission estimates in turn.

Qualitative Comparison. Figure 10 qualitatively validates the robust perfor-
mance in dehazing the common reference dataset of hazy scenes [4]. We compare
the performance of our dehazing algorithm with three state-of-the-art meth-
ods [2,4,5]. We were motivated to achieve consistent performance of dehaz-
ing with less parameter controls like other image processing algorithms [25,26].
Figure 10 shows results using the single set of parameters as described in Sect. 3.
Our method shows competitive results to other method [4] that requires manual
tweaking parameters per scene to achieve plausible results. For close-up images
of the results, refer to the supplemental material.

Time Performance. Table 1 compare the computational performance of our
method with traditional grid GMRFs and our iso-depth GMRFs using images
shown in Fig. 10. We also shows computational costs of obtaining only NNFs with
17 neighbors using PatchMatch [6] in the third row. Dehazing with iso-depth
NNF-GMRFs takes 10.58 times more time; however, iso-depth NNFs give richer
information in regularization, resulting in more exact scene radiance recovery.
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Fig. 7. Comparisons of dehazing in terms of regularization. The two columns from left
are results from other two methods: Fattal’s method [4] using augmented GMRFs and
Berman’s method [5] using traditional GMRFs, and the third column is our results
(Insets: corresponding transmission maps). While other methods often fail to obtain
sharp edge-discontinuities in the images, our method yields clear recovered scene radi-
ance maps as shown above. Notable regions are pointed with arrows. Images courtesy
of Kim and Kim [1].
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Fig. 8. We present an example before and after applying our dehazing and regulariza-
tion method. (a) The hazy input image. (b) The recovered scene radiance map with
the transmission map regularized by grid MRFs (e). (c) The recovered scene radi-
ance map with the final transmission map (g). Images (d)–(g) compare transmission
maps to show the influence of using iso-depth NNFs. All regularizations are done using
GMRFs. (d) The initial transmission estimates including discarded pixels (the black
pixels). (e) The regularized transmission map without NNFs. (f) The regularized trans-
mission map with NNFs. (g) The final refined map of (f) using the weighted median
filter. Images courtesy of Kim and Kim [1].

Quantitative Comparison. We compare our method with the entire synthetic
hazy image dataset provided by Fattal [4]. The synthetic hazy images were gen-
erated by datasets that contain clear indoor and outdoor scenes, and their corre-
sponding depth maps. Table 2 reports the quantitative comparison of our method
with other methods: He et al. [2], Fattal [4], and Berman et al. [5]. Addition-
ally, we present the statistics in Table 2 and Fig. 11. It says that our method
shows the best performance in dehazed images, and is strongly competitive to
state-of-the-arts in transmission maps. We also show the dehazed images used
for the quantitative comparison in Fig. 12. Our method shows competitive and
consistent results particularly in dehazed images.

Table 1. Comparison of time performance of dehazing with the traditional grid GMRFs
and our GMRFs with iso-depth NNFs (unit: second). Refer to Fig. 10 for processed
images. The third row shows computational costs of only seeking NNFs with 17 neigh-
bors using PatchMatch [6] in our method. The table courtesy of Kim and Kim [1].

Dehazing House Forest ny17 Train Snow Castle Cones Average

With grid GMRFs 6.43 26.55 27.51 7.74 18.88 12.84 6.41 15.19

With NNF-GMRFs 58.84 305.48 305.06 73.06 191.76 129.18 61.12 160.64

(Computing NNFs only) (6.44) (31.82) (28.48) (7.15) (18.54) (11.01) (7.31) (15.82)
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Fig. 9. We compare our regularization with other methods. The leftmost one is the
original image of cones. The first row shows dehazed results with our transmission
estimation step and each regularization method written at the lower right. We cropped
the dehazed images in the first row to highlight the influence of regularization methods
in the second row. The third row presents a sequence of cropped transmission maps in
the same manner as the second row. Images courtesy of Kim and Kim [1].

Table 2. Quantitative comparisons of our method with other methods [2,4,5]. The
error values are computed from the entire synthetic hazy image dataset provided by
Fattal [4]. All figures represent mean L1 error of the estimated transmission t (the left
value) and output image J (the right value). Red figures indicate the best results, and
blue for the second best. For a fair comparison, parameters for each method, such as
display gamma for sRGB linearization and the airlight vector, were optimized for the
highest performance. The table courtesy of Kim and Kim [1].

He [2] Fattal [4] Berman [5] Ours

church 0.0711/0.1765 0.1144/0.1726 0.1152/0.2100 0.1901/0.1854

couch 0.0631/0.1146 0.0895/0.1596 0.0512/0.1249 0.0942/0.1463

flower1 0.1639/0.2334 0.0472/0.0562 0.0607/0.1309 0.0626/0.0967

flower2 0.1808/0.2387 0.0418/0.0452 0.1154/0.1413 0.0570/0.0839

lawn1 0.1003/0.1636 0.0803/0.1189 0.0340/0.1289 0.0604/0.1052

lawn2 0.1111/0.1715 0.0851/0.1168 0.0431/0.1378 0.0618/0.1054

mansion 0.0616/0.1005 0.0457/0.0719 0.0825/0.1234 0.0614/0.0693

moebius 0.2079/0.3636 0.1460/0.2270 0.1525/0.2005 0.0823/0.1138

reindeer 0.1152/0.1821 0.0662/0.1005 0.0887/0.2549 0.1038/0.1459

road1 0.1127/0.1422 0.1028/0.0980 0.0582/0.1107 0.0676/0.0945

road2 0.1110/0.1615 0.1034/0.1317 0.0602/0.1602 0.0781/0.1206

average 0.1181/0.1862 0.0839/0.1180 0.0783/0.1567 0.0836/0.1152
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Fig. 10. Validation of consistency of dehazing. The first column shows input images.
The second, third, and fourth columns are results from He et al. [2], Fattal [4], Berman
et al. [5], respectively. The fifth column presents our method’s results. We use the set
of parameters as described in Sect. 3. For the images in the third and fifth rows, we
only set the threshold of lower bound transmission to 0.4 and the others to 0.1 for
removing narrow angle outliers. Our method is competitive to other method [4] that
requires with manual tweaking parameters to achieve plausible results. Refer to the
supplemental material for more results. Images courtesy of Kim and Kim [1].
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Fig. 11. Mean L1 error plots of 11 pairs of transmission maps and dehazed (Table 2)
results, respectively. Our method shows the best performance in dehazed images, and
is strongly competitive to state-of-the-arts in transmission maps.

Fig. 12. Dehazed results for the quantitative comparison shown in Table 2. The first
column shows synthetic hazy images generated from the ground truth dataset [4] in
the second column with their corresponding depth maps. The remaining columns are
recovered scene radiance maps by each method. Our method yields consistent results
compared with other methods. Parameters for each method were optimized for the
highest performance for a fair comparison. Images courtesy of Kim and Kim [1].
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Fig. 13. Comparisons to show the influence of a patch size in estimating transmission.
(a) The original canon image. (b) The dehazed image with a patch size of 3 × 3 where
severe color clamping happens. (c) The dehazed image with a patch size of 15 × 15,
which is our choice for all results. (d) The dehazed image with a patch size of 29 × 29
in which the airlight in distant regions is underestimated. Images courtesy of Kim and
Kim [1].

Fig. 14. Validation of our narrow angle outlier rejection method described in Sect. 3.
In the second column, the distant region represented as sky has an infinite depth, and
hence our transmission estimation stage estimates its transmission as being close to
zero, which yields overly saturated results. We obtained consistent results by our outlier
rejection stage, as shown in the third column. Images courtesy of Kim and Kim [1].
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Fig. 15. Validation of our saturated outlier rejection method described in Sect. 3. The
inset is an input hazy image. The first column shows estimated transmission maps with-
out our rejection (upper left) and with our rejection (bottom left). The corresponding
dehazed scenes are shown in the second column. The bright regions (the direct light
at the upper right and the wall of the castle in the middle) are overly saturated. Our
outlier rejection succeeds to produce a consistent result by discarding those regions.

Impact of Patch Size. Figure 13 shows the results of dehazing under varying
patch sizes. Image (a) is an input image of canon, the size of which is 600× 524.
Image (b) is severely over-saturated since the size of patches is so small that
each patch cannot contain rich information of scene structures, i.e., the patch
failed to reject the influence of highly-varying nature of scene radiance. On the
other hand, as shown in image (d), its airlight is underestimated since patches
are too large to hold the assumption that transmission is piecewise constant.
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This underestimation result is exacerbated in distant regions where their scene
depth changes rapidly. In our experiment, we found that the patch size of 15×15
works properly for most scenes, and therefore we take the same patch size for
all results in this paper.

Outlier Removal. We validate our outlier-rejection process. Figure 14 shows
the regions in infinite scene depths occupy a large portion of the image that is
full of airlight in the two input images. In these regions, there is a large ambigu-
ity between airlight and scene radiance, and hence our method fails to produce
a naturally looking result as the second column shows. After we discard outliers
having a narrow angle between the atmospheric vector and the input color pixel,
we could obtain high-quality scene radiance maps in the third column. We also
show the influence of saturated intensity outliers as mentioned in Sect. 3. We esti-
mated an atmospheric vector under the assumption that the atmospheric light
is the brightest all over a scene. As Fig. 15 presents, without rejecting saturated
intensity outliers, transmission of those pixels will be severely overestimated due
to their high luminance. We can also reject those regions by increasing a patch
size; however, this will cause underestimation of airlight and cannot handle a
large area as well.

6 Limitations

While our method produces consistent results for most cases; however, there are
a small number of cases where our atmospheric vector estimation stage fails.
Figure 16 shows an example of our algorithm’s failure in finding the correct
atmospheric light. There are clouds in the image that occupy relatively large
regions but are not saturated, and therefore in the atmospheric vector estimation
stage, our method selects pixels in cloud regions as candidates of the atmospheric
light, which is not correct. For this reason, our transmission estimation stage
severely overestimates the amount of airlight, particularly in distant regions in
the scene as shown in Fig. 16(b). We validate the limitation by picking up the
atmospheric vector of the image manually, and our algorithm yields a naturally-
looking result, as the Fig. 16(c) presents. In addition, if there is a large region
that is grayish and thereby has a narrow angle between an atmospheric vector
and the region color, our algorithm fails to find correct transmission estimates
since there are too many outliers according to our outlier rejection stage, which
leads to unreliable regularization. We leave these problems as future work.
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Fig. 16. Our failure case with a landscape image. Image (a) shows the input image,
and Image (b) presents our result with the same set of parameters described. Image
(c) is our result produced with the manually-tweaked atmospheric vector. (Color figure
online)

7 Conclusion

We have presented a single-image dehazing method with our novel non-local
regularization using iso-depth neighbor fields. While traditional dehazing meth-
ods often suffer from haze isolation artifacts due to improper propagation of the
haze cues in the transmission map, our dehazing method can clarify hazy images
robustly thanks to our iso-depth regularization approach. Our non-local regu-
larization method infers nonlocal iso-depth cues to obtain more reliable smooth-
ness penalty for better handling the isolation problem even with blunt changes
of depth. The proposed iso-depth regularization method is independent of haze-
component estimation so that it is directly applicable to any state-of-the-art
dehazing methods.
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Abstract. Egomotion estimation is a fundamental issue in structure
from motion and autonomous navigation for mobile robots. Several cam-
era motion estimation methods from a set of variable number of image
correspondences have been proposed. Seven- and eight-point methods
have been first designed to estimate the fundamental matrix. Five-point
methods represent the minimal number of required correspondences to
estimate the essential matrix. These feature-based methods raised spe-
cial interest for their application in a hypothesize-and-test framework to
deal with the problem of outliers. This algorithm allows relative pose
recovery at the expense of a much higher computational time when deal-
ing with higher ratios of outliers. To solve this problem with a certain
amount of speedup, we propose in this work, a CUDA-based solution
for the essential matrix estimation from eight, seven and five point cor-
respondences, complemented with robust estimation. The mapping of
these algorithms to the CUDA hardware architecture is given in detail
as well as the hardware-specific performance considerations. The cor-
respondences in the presented schemes are formulated as bearing vec-
tors to be able to deal with all camera systems. Performance analysis
against existing CPU implementations is also given, showing a speedup
4 times faster than the CPU for an outlier ratio ε = 0.5 which is common
for the essential matrix estimation from automatically computed point
correspondences, for the five-point-based estimation. More speedup was
shown for the seven and eight-point based implementations reaching 76
times and 57 times respectively.

Keywords: Egomotion · Visual odometry · Robotics · CUDA · GPU

1 Introduction

Accurate localization is a fundamental issue in autonomous navigation that has
been extensively studied by the Robotics community. First advancements have
emerged within the Simultaneous Localization And Mapping (SLAM) approach
- the process of generating an internal map using sensor observations while mov-
ing through an environment - has received a great deal of attention [1]. Many
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sensory devices have been used in SLAM systems including lidar scanners and
cameras that have become very popular due to their low-cost, wide availability,
passive nature and modest power requirements [2,3]. Vision-based SLAM sys-
tems coined Visual SLAM (or v-SLAM) [4–6] may include several modules to
concurrently perform the tracking and mapping tasks such as a visual odometry
module (VO) [7,8]. This latter is derived from Structure from Motion (Sfm) and
refers to the process of incrementally estimating the egomotion of an agent (e.g.,
vehicle, human and robot) using only the input of a single or multiple cameras
attached to it. The feature-based VO for the monocular scheme consists mainly
in finding corresponding features in consecutive frames in the video sequence
and using the scene’s epipolar geometry to calculate the position and orienta-
tion changes between the two images. A common way of determining the relative
pose using two images taken by a calibrated camera is based on the estimation of
the essential matrix that has been studied for decades. The first efficient imple-
mentation of the essential matrix estimation is proposed by Nistér in [9] and uses
only five point correspondances. The work of Stewenius built upon the work of
Nistér uses the Gröbner Basis to enhance the estimation accuracy [10]. Although
the essential matrix expresses the epipolar geometry between two views taken
by a calibrated camera, a more general relationship can be derived in the case of
a non-calibrated camera expressed by the fundamental matrix which is the alge-
braic representation of epipolar geometry [11]. However, in a real application,
wrong matches can lead to severe errors in the measurements, which are called
outliers and that occurs during the descriptors matching step. The typical way of
dealing with outliers consists of first finding approximate model parameters by
iteratively applying a minimal solution in a hypothesize-and-test scheme. This
procedure allows us to identify the inlier subset, and then, a least-squares result
is obtained by minimizing the reprojection error of all inliers via a linear solution
or a non-linear optimization scheme, depending on the complexity of the prob-
lem. This scheme is called RANdom Sample Consensus (RANSAC) and has been
first proposed by Fischler and Bolles [12]. RANSAC can often find the correct
solution even for high levels of contamination. However, the number of samples
required to do so increases exponentially, and the associated computational cost
is substantial. Especially for robotics systems, the challenges are more acute, due
to their stringent time-response requirements. To solve these problems with a
certain amount of speedup, the usage of GPU computation is a popular topic in
the community. Researchers and developers have become interested in harness-
ing the Graphics Processing Units (GPUs) power for general-purpose computing,
an effort known collectively as GPGPU (for General-Purpose computing on the
GPU). The Compute Unified Device Architecture (CUDA) has enabled graph-
ics processors to be explicitly programmed as general-purpose shared-memory
multi-core processors with a high level of parallelism [13]. In fact, recently, many
problems are being solved using programmable graphics hardware including fea-
ture matching and triangulation [14], feature detectors [15], large non-linear
optimization problems such as bundle adjustment [16] and learning algorithms
[17]. In this paper, we focus on an efficient implementation of a state-of-the-art
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relative pose estimation based on the computation of the Essential matrix from
five correspondances. We consider single GPU implementation and we describe
the strategies to map the problem to CUDA architecture. Furthermore, new
Kepler and Maxwell architecture features are used and analyzed, such as CUDA
Dynamic Parallelism and new CuBLAS batched interfaces. The outline of this
paper is as follows: we briefly present the theory underlying the essential and
fundamental matrices estimation in Sect. 2. Section 3 details the CUDA based
implementation of the essential matrix estimation algorithm within RANSAC
from five, seven and eight points. Afterwards, Sect. 4 shows several experiments
as examples of the speedup results obtained with our implementation. Finally
Sect. 5 gives the conclusion of the paper.

2 Background

The geometric relations between two images of a camera are described by the
fundamental matrix and by the essential matrix in case the camera is calibrated.
The essential matrix directly holds the parameters of the motion undergone. In
this section, we provide an overview of the important background underlying the
robust essential matrix estimation as well as the main feature-based methods
used to derive the essential matrix and consequently the camera motion.

2.1 Fundamental and Essential Matrices

The epipolar geometry exists between any two camera systems. For a point ui

in the first image, its correspondence in the second image, u
′
i, must lie on the

epipolar line in the second image. This is known as the epipolar constraint. Alge-
braically, for ui and u

′
i to be matched, the following equation must be satisfied

u
′T
i F ui = 0, (1)

where F is the 3 × 3 fundamental matrix that has seven degrees of freedom
because it is of rank 2 (i.e. det(F ) = 0) and is defined only up to a scale.
Therefore, at least seven point correspondences are required to calculate it. In
fact, each point match gives rise to one linear equation in the unknown entries
of F . From all the point matches, we obtain a set of linear equations of the form

AF = 0, (2)

where A is a 7 × 9 constraint matrix. If rank(A) = 8 when using 8 correspon-
dences, the solution is unique (up to a scale) and can be found by linear methods.
However, least squares methods are preferred because of the presence of image
noise and quantization effects.

The essential matrix is a 3 × 3 matrix as well, and can be considered as a
special case of the fundamental matrix, satisfying the following relationship

x
′T
i E xi = 0, (3)
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where xi and x
′
i are normalized image point correspondences (i.e. xi = K−1ui

and x′
i = K−1u′

i with K the intrinsic calibration matrix). The fundamental and
the essential matrices are, therefore, related by

E = K−1 F K, (4)

where K is the intrinsic calibration matrix.
Furthermore, if the two views have relative pose [R|t] then

E = [t]×R, (5)

where [t]× is the skew-symmetric matrix with the property that [t]×x = t × x.
However, from two images alone, the length of t cannot be determined as E

is only determined up to a scale.
To directly compute the essential matrix, expanding Eq. 3 is, generally, done

which gives a single linear constraint in the nine elements of E for every corre-
spondence. From N correspondences, these equations can be stacked to form a
9 × N matrix which null space obtained by singular value decomposition (SVD)
gives a basis for the space in which E lies. The points within this vector space
which are essential matrices are those which can be decomposed into a rotation
and a translation. E can be decomposed in this way using an SVD decomposition

E = U

⎛
⎝

s 0 0
0 s 0
0 0 0

⎞
⎠ V T , (6)

which is equivalent to the following constraint providing an efficient test whether
a matrix is approximately an essential matrix

EETE − 1
2
trace(EET )E = 0. (7)

2.2 Essential Matrix Computation from Feature Correspondences

Computing E from Eight Correspondences. F can only be determined up
to a scale, there are, thus, 8 unknowns and at least 8 point matchings are used
by the 8-point algorithm. The constraint matrix A obtained according to Eq. 2
is, therefore, 9×8. The least square solution is the singular vector corresponding
the smallest singular value of A, i.e. the last column of V in the SVD where
A = U D V T .

Computing E from Seven Correspondences. The matrix of constraints
A is constructed from n = 7 correspondences and will therefore have a two-
dimensional null-space. This latter is derived from the use an SVD decomposition
resulting in two independent vectors f1 and f2. Taking f as the vector containing
the coefficients of the fundamental matrix F ,

f = (F11 F12 F13 F21 F22 F23 F31 F32 F33)T , (8)
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f can be written as f = (1 − t) f1 + t f2 with t ∈ R, solution of Af = 0.
The corresponding F-matrices are therefore,

F = (1 − t)F1 + t F2. (9)

The condition det(F ) = 0 leads to the equation,

det((1 − t)F1 + t F2) = 0, (10)

that is a 3rd degree polynomial in t having at most 3 real roots, i.e. one or three
solutions are possible. The correct one is obtained after disambiguation to check
for the correct fundamental matrix. In our case, we are dealing with normalized
data and would, therefore, directly obtain the essential matrix E = F . In fact,
the essential and fundamental matrices are related as follows:

E = K
′T F K. (11)

Computing E from Five Correspondances. Several algorithms have been
developed to estimate the essential matrix, including, the seven- and eight-point
algorithms that are relatively fast [11]. However, for their use within RANSAC,
essential matrix computations have relied on minimal subsets, which for essential
matrix is five correspondences. Furthermore, Essential matrix estimation from
five correspondances have shown a better accuracy than other faster algorithms
with more correspondances. In essential matrix estimation, given five correspon-
dences, four basis vectors satisfying Eq. 1 can be computed by SVD. All linear
combinations of these basis vectors satisfying Eq. 3 are essential matrices that
provide nine cubic constraints in the elements of E. The methods of Nistér [9],
and Stewenius et al. [10] both work by solving these nine equations. Stewenius
et al. first showed that the equations can be written as

M X = 0, (12)

where M is a 10 × 20 matrix.
After gauss-jordan elimination, the system can be written

[I B]X = 0, (13)

where I is a 10 × 10 identity matrix and B a 10 × 10 matrix.
Stewenius et al. used, subsequently, the action matrix concept to solve the

systems in which a Gröbner basis is found. The 10×10 action matrix real eigen-
values and eigenvectors contain, hence, the solutions of polynomial equations.

2.3 Relative Pose Computation from Essential Matrices Solutions.

Once the essential matrices solutions are computed, they have to be decomposed
into rotation and translation. In fact, the decomposition follows the normal pro-
cedure for the general case [9], giving two possible solutions for the rotation, Ra
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and Rb, and two solutions for the translation as well, ta and tb, which have the
same direction t̂ determined up to a scale.

Thus, if E ∼ USV T is the SVD of E, a matrix D is defined as

D =

⎡
⎣

0 1 0
−1 0 0
0 0 1

⎤
⎦ . (14)

Then, Ra = UDV T and Rb = UDTV T . The solution for the translation
direction is t̂ = [U13U23U33]T .

Four pose configurations are, therefore, obtained for each essential matrix
namely, (Ra, ta), (Rb, ta), (Ra, tb) and (Rb, tb). Consequently, a disambiguation
has to be performed to output the correct movement undergone by the camera.

2.4 Robust Estimation of the Essential Matrix

Even if the underlying dataset is contaminated with outliers, RANSAC esti-
mator can be used to robustly estimate the model parameters. RANSAC uses
a randomly chosen subset of the entire dataset to compute a hypothesis. The
remaining datapoints are used for validation. Repeating the hypothesis computa-
tion and validation with different subsets, the probability of finding a hypothesis
that fits the data well increases. For a data set with a given proportion ε of out-
liers, the number of trials N required to give sufficiently high probability p to
pick an outlier-free subset consisting of k point correspondences is

N =
log(1 − p)

log(1 − (1 − ε)k)
(15)

Since the confidence p is generally chosen to be p ≥ 0.99, the number of
required RANSAC iterations N only depends on the number of parameters k
and the assumed ratio of outliers ε. Usually, the ratio of outliers ε is unknown.
Hence, we resort to an adaptive version of RANSAC, where, after each iteration,
the number of inliers γ is counted and the outlier ratio is updated according to

ε = 1 − γ

n
, (16)

with n equal to the size of the dataset. The number of iterations N is therefore
updated based on ε.

3 CUDA-Based Relative Motion Estimation from 2-D
to 2-D Correspondences

The complexity of implementing existing algorithms on the GPU depends heav-
ily on control flow of the algorithm. In fact, some algorithms (such as basic
image processing) can be classified as embarrassingly parallel when little effort
is required to split up the process into parallel tasks and are often easily ported
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to the GPU. In contrast, other algorithms are inherently sequential which implies
unexpected scheduling difficulties that prohibit parallelization on the one hand
and greatly increases the effort required to implement an efficient CUDA solu-
tion on the other hand. As has been explicited in the previous section, relative
motion estimation algorithms generally execute within RANSAC to deal with
the problem of outliers. Our parallelization approach is based on performing the
required RANSAC iterations in parallel on CUDA to achieve a certain amount
of speedup. This level of parallelism suggests the consideration of RANSAC
iterations as a batch of parallel computations, each processing a small subset
of data. However, RANSAC is inherently sequential which puts an additional
complexity on the development process. Furthermore, we have relied on the use
of CuBLAS, a high-performance implementation of BLAS-3 routines, for lin-
ear algebra computations [18]. As the matrices sizes in our problem are below
32 × 32, we have particularly exploited the batched interface of the CuBLAS
library where many small dense matrices factorizations, to be performed simul-
taneously, are provided. In this section, we present the implementation details
of relative pose estimation from five, seven and eight correspondences using the
CUDA programming model.

3.1 CUDA-Based Relative Motion Estimation from Five
Correspondences

In this section, we present the implementation details of the essential matrix
estimation from five correspondences within RANSAC presented first in [20]. As
has been stated before, the eigenvalues of the action matrix contain the essen-
tial matrices solutions according to Stewenius’s method [10]. However, a device
based eigenvalue computation on CUDA doesn’t exist yet. Hence, we have relied
on the Matlab code provided by Chris Engels, based on the reduction to a single
polynomial [21]. This is done through the computation of the action matrix char-
acteristic polynomial roots, equivalent to the action matrix eigenvalues. In total,
four kernels have been employed operating at different levels of parallelism. The
first, exploits the CuBLAS library batched interface, manages algebraic com-
putations. It employs, therefore, a thread level parallelism and a nested warp
level parallelism as it uses dynamic parallelism to call CuBLAS functions from
within device. The second employs a straightforward parallelization and works
at a thread-level parallelism where each thread manages the remainder compu-
tations after the completion of the first kernel, i.e. one thread per RANSAC
iteration. The third kernel is used to rate the models outputted by the previ-
ous kernel and works at a block level parallelism where each block validates a
model relative to one RANSAC iteration. Finally, an additional kernel is used
to compute RANSAC’s best model and it simply performs a reduction to find
the model with maximum number of inliers which represents the best model.

CuBLAS Based Kernel. This kernel is launched with one block and a number
of threads equal to the number of required RANSAC iterations. In fact, accord-
ing to Eq. 15, for a probability of success of 0.99 and a rate of outliers equal to
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0.5 the number of RANSAC trials required for a robust estimation based on five
points is equal to 145. We assume that the data is contaminated with 0.5% of
outliers which is quite common for the essential matrix estimation from automat-
ically computed point correspondences. 145 threads belonging to one block are
therefore used. The high level interface exposed by all implementations in this
kernel is CuBLAS batched interface for solving a batch of N different systems.
Besides the batch size and the matrix dimensions, the functions expect pointers
to array of matrices. All arrays are assumed to be stored contiguously with a
column major layout and accessed to in global memory through the handle of
an array of pointers that we statically allocate as follows:

Firstly, a 9 × 5 hypothesis A[i], i = 0...batchSize − 1 is computed from
each random five correspondances by each thread. The computed hypotheses are
written to global memory and referenced by an array of pointers as indicated
above.

Secondly, the null-space of each hypothesis have to be computed by SVD.
However, due to the absence of a GPU-based implementation of SVD decom-
position, we use instead a QR decomposition to derive the null space. In fact,
standard methods for determining the null-space of a matrix are to use a QR
decomposition or an SVD. If accuracy is paramount, the SVD is preferred but
QR is faster. Using a QR decomposition, if AT = QR, and the rank of A is r,
then the last n−r columns of Q make up the null-space for A. This is performed
through a call to the cuBLAS built-in function cublasDqrfBatched performing
a QR factorization of each A[i] for i = 0, ..., batchSise − 1. The decomposition
output is presented in a packed format where the matrix R is the upper triangu-
lar part of each A[i] and the vectors v on the lower part are needed to compute
the elementary reflectors. the matrix Q is, hence, not formed explicitly, but is
represented as a product of these elementary reflectors.

As CuBLAS doesn’t provide a built-in routine to retrieve Q as Lapack does,
we designed a child kernel called from the main kernel to simultaneously calculate
the different reflectors and compute their product to retrieve Q.

The number of Thread-blocks in the launch configuration of the child ker-
nel is equal to the batchSize, i.e. iterations. Each Thread-block computes a
single matrix Q and a block-level parallelism is hence applied. The Thread-
blocks are designed to be three-dimensional, where the x-dimension refers to
the number of rows of each reflector, the y-dimension to the number of columns
and the z-dimension to the number of reflectors. This allows each thread to
handle one element in shared memory and consequently, ensure a parallel com-
putation of the different reflectors. It is worth noting that this configuration is
possible because the matrix sizes in our problem are small (5 refrectors, each
of size 9 × 9) and consequently, all reflectors fit at once in shared memory.
The computation consists in loading, first, the A[blockIdx.x], and the array of
scalars Tauarray[blockIdx.x] exited by cublasDqrfBatched into shared mem-
ory where the matrix Q is also allocated. The vector vi relative to each reflector
qi is then putted in the required form, where vi(1 : i − 1) = 0 and vi(i) = 1
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with vi(i + 1 : m) on exit in A[blockIdx.x][i + 1 : m, i]. Each reflector qi has
the form qi = I −Tau[i].v.transpose(v), computed for all reflectors by the pseu-
docode explicited in Fig. 1 and finally, the product of all reflectors is computed
to retrieve Q.

Fig. 1. Pseudocode of reflectors computation in shared memory.

Once the null-space determined, the second step is to compute a 10 × 20
matrix M that is accelerated in the provided openSource code, through a sym-
bolic computation of the expanded constraints. The matrix columns are then
rearranged according to a predefined order. To save execution time and mem-
ory usage, we use to rearrange the matrix columns beforehand and to write it
in column major for subsequent use of cuBLAS functions. We hence output a
permuted 20 × 10 matrix M .

Subsequently, the Reduced Row Echelon Form (RREF) of M have to be
computed through a gauss-jordan elimination, i.e. M = [I B]. Instead of carry-
ing out a gauss-jordan elimination on M , a factorization method may be used
to find directly the matrix B from the existant matrix M . In fact, cuBLAS
provides several batched interfaces for linear systems factorizations. We exploit
the batched interface of LU factorization performing four GPU kernel calls for
solving systems in the form (MX = b) as follows:

1. LU decomposition of M (P M = LU).
2. Permutation of the array b with the array of pivots P (y = P b).
3. Solution of the triangular lower system (Lc = y).
4. Solution of the upper system to obtain the final solution (U x = c).

With putting b as an array of pointers to null vector, cuBLAS directly provides
cublasDgetrfBatched for the first step and cublasDgetrsBatched for the three
other steps. We finally obtain the matrix B in exit of cublasDgetrsBatched,
solution of the system MX = 0.



248 S. Ouerghi et al.

RANSAC Models Computation Kernel. At this level, the kernel is
launched with one CUDA block and iterations number of threads. We only use
global memory where the computations of the previous kernel are stored and
small per thread arrays using registers and local memory.

Each thread computes a 10th degree polynomial using local variables. This
is done by extracting from the RREF in global memory the coefficients of two
3rd degree polynomials and a 4th degree polynomial represented by private local
arrays for each thread. These polynomials are afterwards convoluted then sub-
tracted and added to generate a single 10th degree polynomial for each thread
as explicited in the original Matlab code and which refers to the computation of
the determinant of the characteristic polynomial. The convolution is performed
in our implementation through a special device function presented as a symbolic
computation of three polynomials of 3rd, 3rd and 4th degrees respectively.

The key implementation of this kernel is the resolution of a batch of 10th

degree polynomials. In fact, we used a batched version of the Durand-Kerner
Method in which we assign to each polynomial a thread. We start by giving a
brief overview of the Durand-Kerner method, followed by our implementation
details.

Durand-Kerner Method. The Durand-Kerner Method allows the extraction
of all roots ω1, ..., ωn of a polynomial

p(z) =
n∑

i=0

aiz
n−i, (17)

where an �= 0, a0 = 1, ai ∈ C.
This method constructs a sequence, H(zk) = zk+1 in C

N with Z(0) being any
initial vector and H is the Weierstrass operator making Z

(k)
i tends to the root

ωi of the polynomial, defined as:

Hi(z) = zi − P (zi)∏
j �=i(zi − zj)

i = 1, ..., n (18)

The iterations repeat until |Zk
i −Zk+1

i |
Zk

i

or |P (zki )| is smaller than the desired
accuracy.

GPU Version of Batched Durand-Kerner. The implementation of the
Durand-Kerner on GPU, is basically sequential where each thread computes
the ten complex roots of the 10th degree polynomial. We defined the type COM-
PLEX denoting structs of complex numbers. We started from an initial com-
plex guess z randomly chosen, and the vector of complex roots R of size the
number of roots (10 in our problem) where, R[i] = zi, i = 1..n − 1. The func-
tionpoly evaluates at z a polynomial of the form of Eq. 17 where the vector
A = a1, a2, a3, ..., a(n − 2), a(n − 1), a(n) denotes the coefficients of our poly-
nom.
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As we are dealing with complex numbers, complex arithmetic has been
employed denoted by compsubtract for complex numbers subtraction and comp-
div for complex division. As explicited in the following piece of code, we iterate
until obtaining the desired accuracy expressed as a relative error of estimated
roots below a predefined value as depicted in Fig. 2.

Fig. 2. Pseudocode of batched Durand-Kerner method on CUDA.

As explicited in Sect. 2.3, an SVD decomposition of the directly obtained
essential matrices which are up to 10 (real solutions of 10th degree polynomial)
is used to decompose each solution into rotation and translation. This operation
can take a significant portion of the computation time and we use, therefore, a
specifically tailored singular value decomposition for essential matrices accord-
ing to Eq. 6, that is proposed in [9] (Appendix B). In our implementation, each
thread computes up to 10 essential matrices, and for each, four movement con-
figurations are obtained.

However, in order to deal with all central camera models including perspec-
tive, dioptric, omnidirectional and catadioptric imaging devices, image measure-
ments are represented as 3D bearing vectors: a unit vector originating at the
camera center and pointing toward the landmark. Each bearing vector has only
two degrees of freedom, which are the azimuth and elevation inside the cam-
era reference frame as formulated in [19]. Because a bearing vector has only
two degrees of freedom, we frequently refer to it as a 2D information and it is
normally expressed in a camera reference frame.

The disambiguation step that has, finally, to be performed by each thread
consists in calculating the sum of reprojection error of the triangulated 3D points
relative to the corresponding bearing vectors used to compute the model. Finally,
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a single 4 × 3 transformation into the world reference frame matrix is returned
by each thread referring to the lowest score of reprojection error between all
essential matrices and pose configurations (up to 40). The transformation matrix
is directly obtained from the already calculated rotation and translation.

Indeed, the triangulation method used in our implementation follows the
general scheme employed in [19]. The reprojection error of 3D bearing vectors
was proposed in [19] as well, and is computed by considering the angle between
the measured bearing vector fmeas and the reprojected one frepr. In fact, the scalar
product of fmeas and frepr directly gives the angle between them, which is equal
to cos θ as illustrated in Fig. 3. The reprojection error is, therefore, expressed as

ε = 1 − fT
measfrepro = 1 − cos θ. (19)

Fig. 3. Reprojection error computation in Opengv (Source: [19]).

RANSAC Rating Kernel. In order to validate each estimated model, we
compute a loss value for each datapoint of the dataset. The loss value is used to
verify the model by computing the reprojection error of all triangulated bear-
ing vectors of the dataset. Outliers are subsequently found by thresholding the
reprojection errors, and the best model refers to the one with the maximum
number of inliers. As the entire operation is in 3D, we use the thresholding
scheme adopted in the Opengv library [19]. This latter uses a threshold angle
θthreshold to constrain frepr to lie within a cone of axis fmeas and of opening
angle θthreshold as depicted in Fig. 3. The threshold error is given by

εthreshold = 1 − cos θthreshold = 1 − cos(arctan
ψ

l
), (20)

where ψ refers to the classical reprojection error threshold expressed in pixels
and l to the focal length.

The model validation process considers multiple accesses to global memory
to evaluate whether each correspondence of the dataset is an inlier or an outlier
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which is a very time consuming. The shared memory is, hence, used as a cache
to accelerate computations. The RANSAC rating kernel employs a block level
parallelism and is launched with iterations blocks to make each block handle
a RANSAC model and 8 × warpsize threads. Since warpsize = 32, a total of
256 threads are launched per block and each thread in the block evaluates a
point. To load datapoints in shared memory, a buffer is allocated of size 256 × s
where s refers to the size of each datapoint. In case of bearing vectors, s = 6.
Each thread triangulates bearing vector correspondances into a 3D point and
computes its reprojection error according to Eq. 19. This latter is, thereafter,
compared to the precalculated threshold according to Eq. 20 to decide whether
the correspondance refers to an inlier or to an outlier. In our implementation,
the number of inliers for 256 values is automatically returned via:

The process of loading data into buffer and evaluating 256 reprojection errors
is repeated ceil (datasetCount/256) times.

RANSAC Best Model Computation Kernel. This kernel is launched with
one block and itearations threads and performs a reduction in shared memory
to derive the best model which refers to the one with the maximum number of
inliers.

3.2 CUDA-Based Relative Motion Estimation from Seven
Correspondences

The implementation of the seven-point method relies on many common compo-
nents with the five-point method presented above. Our parallelization strategy
relies on performing the RANSAC iterations in parallel, as well. This suggests
redesigning the sequential code as has been done for the five point case. In this
section, we will only present the key steps that are different from the previ-
ous implementation. We recall that, as has been stated before, the fundamental
matrix has 7 degrees of freedom and requires seven correspondences to be esti-
mated. As we are working with normalized bearing vectors on the unit sphere,
our data is, therefore, normalized, and we directly obtain the essential matrix.
As has been presented in Sect. 2.2, the algorithm requires the computation of
the null-space of the constraint matrix formed from 7 correspondences randomly
chosen. The null-space is two-dimensional resulting in two independant vectors.
These latters lead to a 3rd degree polynomial that has at most 3 real root rep-
resenting the possible fundamental matrices solutions (or the essential matrices
in the calibrated case). This requires the recovery of the null-space and the
resolution of a 3rd degree polynomial.

Null-Space Recovery. The constraint matrix, constructed from 7 correspon-
dences is of size 7 × 9. The null-space recovery is, generally, performed by SVD.
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We use instead the same method presented in Sect. 3.1 based on a QR decom-
position and use as well the batched interface of the CuBLAS library to simul-
taneously find the null-spaces of a batch of small matrices, each referring to a
RANSAC iteration.

Cubic Polynomial Root Solver. In the 7-point algorithm, finding the fun-
damental matrices solutions or the essential matrices for the calibrated case is
reduced to solving a 3rd degree polynomial in the form of Eq. 10. Several state
of the art methods can be used to solve a general polynomial including Durand-
kerner method presented in Sect. 3.1. However, as we are dealing with only a
cubic degree, we have opted for a direct solver, namely Cardano’s Formula [22].

Robust Pose Estimation on GPU. The advantage of the GPU is gained
through the execution of the RANSAC iterations in parallel. The RANSAC
estimation process consists in two major steps executed by two separate kernels
namely, hypotheses computation kernel and loss values computation kernel.

Hypotheses Computation Kernel. This kernel is executed on the CUDA
device with a given number of CUDA threads T and CUDA blocks B depending
on the number of required iterations as N = T.B. We take in general the number
of threads T as multiple of warp size. This kernel consists of the steps explained
below.

1. At the beginning of each iteration, each thread performs the computation of
7 random numbers that are used to choose the subset for further steps. In
our implementation, Marsaglia’s random numbers generator has been used to
generate random numbers on GPU [23].

2. The second step consists in simultaneously computing the different hypothe-
ses including finding up to 3 possible essential matrices, solutions of the 3rd

degree polynomial. Each solution is decomposed, then, into rotation R and
translation t and a disambiguation is, subsequently, performed to pick up
the right solution. At the end of this stage, transformation matrices (with
the form [R|t]) are contiguously written in the device’s global memory at the
number of RANSAC iterations.

RANSAC Rating Kernel. In order to validate each estimated hypothesis
obtained on exit of the hypotheses computation kernel, we compute a loss value
for each datapoint of the dataset. The loss value is used to verify the hypothesis
by computing the reprojection error of all triangulated bearing vectors of the
dataset as presented in Sect. 3.1. Outliers are subsequently found by thresholding
the reprojection errors, and the best model refers to the hypothesis with the
maximum number of inliers.

An additional kernel is, finally, used aiming at determining the best model
which refers to the one that has the maximum number of inliers by performing
a reduction in shared memory.
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3.3 CUDA-Based Relative Motion Estimation from Eight
Correspondences

The egomotion estimation using the eight-point algorithm on CUDA follows
the same scheme presented in the previous section dealing with seven correspon-
dences. The null-space is obtained via a QR decomposition as has been previously
discussed and is one dimensional which gives one essential matrix solution. The
implementation mainly involves two kernels, the first for hypotheses computa-
tion that is launched with T threads and B blocks to simultaneously compute
N RANSAC iterations where N = T.B. The second is for rating the RANSAC
hypotheses ans is launched with N blocks and 256 threads and involves the
bearing vectors rating scheme. Finally, an additional kernel is used to determine
the best model which refers to the one that has the maximum number of inliers.
However, to avoid the costly iterative SVD, the null-space is determined via QR
instead of SVD and the rank 2 constraint that has to be enforced according to
Eq. 6 is directly implemented using an SVD computation for 3 × 3 matrices.

4 Results

In this section we evaluate the speed and accuracy of our CUDA based essential
matrix solver within RANSAC and compare it against the CPU based imple-
mentation for general relative camera motion provided in the OpenGV library.
This latter is an openSource library that operates directly in 3D and provides
implementations to solve the problems of computing the absolute or relative
pose of a generalized camera [19].

4.1 Random Problem Generation

To make synthetic data for our tests, we used the automatic benchmark for
relative pose included in the Matlab interface of the OpenGV library. We used
the provided experiment to create a random relative pose problem, that is, cor-
respondences of bearing vectors in two viewpoints using two cameras at the
number of 1000 correspondences. In fact, the number of 1000 correspondences
has been chosen based on an averaged number obtained from real images. The
experiment returns the observations in two viewpoints plus the ground truth
values for the relative transformation parameters.

4.2 Timing

We have measured the mean time while running on the GPU and CPU (using
OpenGV library). To compute the mean time, each estimation is repeated 20
times. The repetition rate is required since a single estimation can be much slower
or much faster than the mean due to the randomization. We only present results of
computations for single-precision datatype as the precision loss due to single preci-
sion doesn’t really affect the localization estimation in a real scenario. In addition,
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visual odometry is generally used with an optimization process to reduce the drift
caused by the run-time accumulation error. The system on which the code has
been evaluated is equipped with an i7 CPU running at up to 3.5 GHz, the intel i7
CORE. The CUDA device is an NVIDIA GeForce GTX 850M running at 876 MHz
with 4096 MB of GDDR5 device memory. The evaluation has been performed with
CUDA version 7.5 integrated with VisualStudio 2012.

At the first execution of the estimation, memory allocations have to be per-
formed. This is required only once and takes about 6 ms. To evaluate our imple-
mentation, 10 outlier ratios from ε = 0.05 to ε = 0.5 in steps of ε = 0.05 are evalu-
ated. Figure 4 shows the number of required RANSAC iterations for the essential
matrix estimation from 5, 7 and 8 correspondences for the 10 outlier ratios.

Fig. 4. Required RANSAC iterations vs outlier ratio.

In Fig. 5, we show the performance results of estimating camera relative pose
from sets of five 2D bearing vectors correspondences. Firstly, in Fig. 5(a), we
compare the mean computation time of CPU and GPU implementations, in
single precision. We show a mean computation time even more important for
CPU reaching 86 ms for an outlier ratio ε = 0.5 against 18 ms for GPU. With an
outlier ratio of ε = 0.5 which is common for the essential matrix estimation from
automatically computed point correspondences, we show in Fig. 5(b) that the
speedup is above 4× compared to the CPU implementation. Furthermore, it is
useful to visualize the intersection between each CPU and GPU evaluation, i.e.
the outlier ratio where the speedup is equal to one. Figure 5(b) shows that there
is no speedup for lower outlier ratios ε ≤ 0.2. This is because the needed number
of iterations for ε = 0.2 is only 12 iterations. However, the minimum number
of iterations used in GPU based implementation is 32 iterations referring to the
warp size.
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(a) timing

(b) speedup

Fig. 5. Performance of essential matrix estimation with RANSAC from 5 correspon-
dences.

In Fig. 6, we show the performance results of estimating camera relative pose
from sets of seven 2D bearing vectors correspondences. In Fig. 6(a), we com-
pare the mean computation time of CPU and GPU implementations, in single
precision. We show a mean computation time for CPU reaching 266 ms for
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(a) timing

(b) speedup

Fig. 6. Performance of essential matrix estimation with RANSAC from 7 correspon-
dences.

an outlier ratio ε = 0.5 against 3.5 ms for GPU allowing a highly important
speedup of 76× as depicted in Fig. 6(a) and (b) for mean time in ms and speedup
respectively.
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(a) timing

(b) speedup

Fig. 7. Performance of essential matrix estimation with RANSAC from 8 correspon-
dences.

In Fig. 7, we show the performance results of estimating camera relative pose
from sets of eight 2D bearing vectors correspondences. As shown in Fig. 7(a),
a speedup of almost 57× is achieved for an outlier ratio of ε = 0.5. In fact,
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(a) timing

(b) speedup

Fig. 8. Performance of essential matrix estimation with RANSAC from 5, 7 and 8
correspondences.

the seven point scheme achieves more speedup as for ε = 0.5, 588 iterations are
required to attain a probability of 0.99 that the subset is outlier-free against
1177 iterations when relying on eight correspondences.
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In a second series of experiments, a fixed number of RANSAC iterations equal
to 1024 is used to evaluate the performance of the three egomotion estimation
schemes. In fact, a high number of iterations is sometimes needed, priorly deter-
mined, in order to estimate the covariance of the data as for instance in [24]. In
Fig. 8, we evaluate the time in ms and the speedup of our CUDA-based imple-
mentations of essential matrix estimation within RANSAC from five, seven and
eight correspondences. Due to the implementations complexities, we only launch
256 parallel threads in the case of 5-pt algorithm and the kernels are therefore
launched 4 times serially by the CPU to perform the 1024 iterations. In the
case of the 7-pt algorithm and 8-pt algorithm, 512 threads are issued in parallel
and the kernels are serially launched 2 times. Figure 8(a) shows an even more
important CPU time reaching 464 ms, 303 ms and 269 ms for the 5-pt algorithm,
7-pt algorithm and the 8-pt algorithm respectively against 50.34 ms, 6.31 ms and
5.5 ms for the CUDA-based implementations. This allows to achieve almost 9×
speedup for the 5-pt algorithm and almost 48× speedup for both the 7-pt algo-
rithm and 8-pt algorithm.

5 Conclusion

In this paper we presented a CUDA-accelerated 2D-2D feature-based egomo-
tion estimation from five, seven and eight correspondences. Feature-based ego-
motion is typically used within RANSAC in order to deal with erroneous feature
correspondences known as outliers. We presented our parallelization strategy,
based mainly on performing the required RANSAC iterations in parallel on the
CUDA GPU. We, hence, designed a mapping of the five-point essential matrix
using Gröbner basis to CUDA resources and programming model as well as
the seven-point and eight-point schemes. Our hardware-specific implementations
dealt with multiple CUDA features such as the batched interface of the cuBLAS
library and the dynamic parallelism. In addition, in order to deal with all central
camera models including perspective, dioptric, omnidirectional and catadioptric
imaging devices, we used a novel scheme based on representing feature measure-
ments as bearing vectors. This representation suggested a specific rating measure
for RANSAC which is based on the computation of the reprojection error of tri-
angulated 3D points from corresponding bearing vectors. An evaluation of our
implementation was presented and the mean computation time of RANSAC for
different outlier ratios was measured. For an outlier ratio ε = 0.5, common for
the essential matrix estimation from automatically computed point correspon-
dences, a speedup of 4 times faster than the CPU counterpart was achieved
for the five-point version. Higher speedups were shown for the seven-point and
the eight-point versions reaching 76 times and 57 times respectively. The five-
point version is known to have a better accuracy at the expense of complexity,
whereas the faster seven and eight point versions are preferred when integrating
an optimization process aiming at reducing the accumulated run-time error.
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Abstract. The retinal microcirculation structure is commonly used as
an important source of information in many medical specialities for the
diagnosis of relevant diseases such as, for reference, hypertension, arte-
riosclerosis, or diabetes. Also, the evaluation of the cerebrovascular and
cardiovascular disease progression could be performed through the iden-
tification of abnormal signs in the retinal vasculature architecture. Given
that these alterations affect differently the artery and vein vascularities,
a precise characterization of both blood vessel types is also crucial for
the diagnosis and treatment of a significant variety of retinal and sys-
temic pathologies. In this work, we present a fully automatic method for
the retinal vessel identification and classification in arteries and veins
using Optical Coherence Tomography scans. In our analysis, we used a
dataset composed by 30 near-infrared reflectance retinography images
from different patients, which were used to test and validate the pro-
posed method. In particular, a total of 597 vessel segments were man-
ually labelled by an expert clinician, being used as groundtruth for the
validation process. As result, this methodology achieved a satisfactory
performance in the complex issue of the retinal vessel tree identification
and classification.

Keywords: Retinal imaging · Vascular tree · Segmentation ·
Artery/vein classification

1 Introduction

The retina is the only tissue of the human body where the information of the
vascular morphology and structure can be evaluated non-invasively and in vivo
[1]. The retinal vasculature is a complex network of blood vessels composed of
c© Springer Nature Switzerland AG 2019
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arteries, veins and capillaries [2]. In the current clinical practice, optical imaging
is widely used in the study, diagnosis, planning, and assessment of the treatment
response in a variety of ocular and systemic diseases that affect the retinal vascu-
lature as, for reference, hypertension [3], diabetes [4] or arteriosclerosis [5]. The
most common symptoms of those pathologies include micro-aneurysms, vascular
tortuosity, arteriovenous nicking or neovascularization.

In many studies, different biomarkers are used to measure the vascular mor-
phology of the retina, particularly between arteries and veins. As reference, we
can find the Arterio-Venular-Ratio (AVR) that is defined by the ratio between
the arteriolar and the venular diameters [6]. In particular, this biomarker is used
by the clinical specialists in the diagnosis of several pathologies as, for example,
diabetic retinopathy, which is among the major causes of blindness worldwide
[7]. Therefore, an accurate identification of the retinal vasculature structure and
its characterization in arteries and veins is essential for the diagnosis and moni-
toring of the treatment of a variety of retinal pathologies [8].

Nowadays, Computer-Aided Diagnosis (CAD) systems are increasingly being
used as auxiliary tools by the expert clinicians for the detection and interpreta-
tion of different diseases [9–11]. These independent decision systems are designed
to assist clinicians in various tasks, including storage, retrieval, organization,
interpretation, and diagnostic output of hypothetical pathological images and
data [12], facilitating and simplifying their work.

Optical Coherence Tomography (OCT) is a non-invasive, cross-sectional and
high-resolution image modality that allows the acquisition of three-dimensional
images of the retinal tissues in real time [13]. This retinal imaging technique uses
low-coherence interferometry to obtain a series of OCT histological sections by
sequentially collecting reflections from the lateral and longitudinal scans of the
ocular tissues of the human eye [14]. The OCT sections are complemented with
the corresponding near-infrared reflectance (NIR) retinography image of the eye
fundus. Both images are simultaneously captured with the same OCT capture
device. Figure 1 shows a representative example of an OCT image composed by
the NIR retinography image and a corresponding OCT histological section.

Fig. 1. Example of OCT scan. (a) NIR retinography image. (b) OCT histological
section.
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Given the importance and applicability of the analysis of retinal images, many
efforts were done to face the analysis with classical retinographies. Thus, as ref-
erence, in the work proposed by Joshi et al. [15], a methodology was designed to
automatically segment the vascular tree structure using a strategy that is based
on graph theory. Then, the blood vessel classification process into arteries and
veins is done using properties of color spaces. Dashtbozorg et al. [16] proposed
an automatic method for the artery/vein classification using a graph-based app-
roach and different machine learning methods. Following a similar strategy, Yang
et al. [17] proposed a method using a Support Vector Machine (SVM) classifier
for the vessels categorization in retinal images. Kondermann et al. [18] pro-
posed a method using SVM and Artificial Neural Networks (ANN) in a feature
extraction and classification process. Relan et al. [19] proposed an unsupervised
method of classification based on a Gaussian Mixture Model on small vessel
patches to classify the main vessels structures. Welikala et al. [21] proposed an
automatic methodology using a Convolutional Neural Network (CNN) approach
for the automatic classification of arteries and veins in retinal images. The final
architecture of this method was composed of six learned layers: three convolu-
tional and three fully-connected. Similarly, Girard et al. [22] proposed a method
for artery/vein classification combining CNN and graph propagation strategies.
In the work of Huang et al. [23], the authors proposed a methodology using
a set of features that are extracted from the lightness reflection of the blood
vessels. Then, a Linear Discriminate Analysis (LDA) learning strategy was used
to validate these selected features. In the work proposed by Zou et al. [24], a
supervised classification method based on feature selection is done. Firstly, the
grey-level co-occurrence matrix (GLCM) and adaptive local binary pattern (A-
LBP) features are extracted. Then, a Feature-Weighted K-Nearest Neighbors
(FW-KNN) algorithm is used to classify the arteries and veins vessels. In the
work of Vázquez et al. [20], the authors proposed a framework for the automatic
classification of the arteries and veins using a k-means clustering. Then, this
information is used to calculate the AVR biomarker.

In this work, we present a fully computational method for the automatic
extraction of the retinal vascular structure and its classification into arteries and
veins using, only, the information that is obtained through the NIR retinography
images. As we said before, these images are provided in combination with the
histological sections of the OCT scans. For this purpose, the method extracts the
retinal vessel tree and uses the k-means clustering algorithm with local features
to differentiate the arteries from the veins. A post-processing stage is carried out
using the anatomical knowledge of the vessels to identify and correct the possible
misclassifications of the individual vessel points. Promising preliminary results
of this method were obtained in the work proposed in [25]. In this context, this
methodology was extended and further deeply validated in this work, expanding
its potential for the identification and classification of arteries and veins in this
image modality.

This work is organized as follows: Sect. 2 presents the proposed methodol-
ogy and the characteristics of all the involved stages. Section 3 details all the
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experiments that were done to validate the method as well as the discussion
about the obtained results. Finally, Sect. 4 includes the conclusions of this pro-
posal as well as the possible future lines of work.

2 Methodology

In this work, the system receives, as input, the NIR retinography image to iden-
tify and classify the vascular tree into arteries and veins. The proposed method-
ology is divided into three main stages: firstly, the entire retinal vascular tree is
extracted from the input image; secondly, the region of the optic disc is identi-
fied and removed for the posterior analysis; and finally, the remaining identified
vessels are analysed and classified into arteries and veins. Figure 2 describes the
general scheme of the proposed methodology, from where each stage will be
detailed in the following subsections.

Fig. 2. Main stages of the proposed methodology.
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2.1 Vessel Segmentation

The first stage of the classification process faces the segmentation of the retinal
vessel tree within the NIR retinography image. For this purpose, we follow the
method proposed by Calvo et al. [26], given its simplicity and for being a well-
established and robust technique that demonstrated its suitability in classical
retinographies.

Firstly, an initial segmentation was performed by means of a hysteresis-based
thresholding strategy. To achieve this, a hard threshold (Th) obtains pixels with
a high confidence of being vessels while a weak threshold (Tw) keeps all the pixels
of the vessel tree, including the spurious ones. The final segmentation is formed
by all the pixels that were included by the Tw weak threshold connected to, at
least, one pixel obtained by the Th hard threshold. The values for Th and Tw are
extracted using as reference two metrics that are calculated on the NIR retinog-
raphy images: the percentage of vascular tree and the percentage of background.
These thresholds are calculated using the percentile values, according to Eq. (1).

Pk = Lk +
k(n/100) − Fk

fk
× c, k = 1, 2, ..., 99 (1)

where Lk is the percentile lower limit k, n represents the size of the data set,
Fk is the accumulated frequency for k − 1 values, fk depicts the frequency of
percentile k and c is the measurement of the size of the percentile interval. In
our case, c is equal to 1. A representative example of this stage of the vessel tree
segmentation is presented in Fig. 3.

Fig. 3. Segmentation process of the retinal vessel tree. (a) Input NIR retinography
image. (b) Vessel tree segmentation image.

Next, the vessel centerline is calculated to represent the vasculature as a list
of representative segments using as baseline the information that was obtained
in the previous segmentation. For this purpose, the implemented strategy was
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based in the work of Caderno et al. [27], where the retinal segments are located
by means of the Multi Local Set of Extrinsic Curvature enhanced by the Struc-
ture Tensor (MLSEC-ST) operator. The operator detects the tubular structures
(ridges or valleys) by means of the analysis of the structure tensor of the seg-
mentation image. And finally, a skeletonization process is done to obtain the
representation of the vessel centerline of each vascular segment. Figure 4 presents
an example with the result of the centerline identification process.

Fig. 4. Vessel centerline identification process of the retinal vessel tree. (a) Input vessel
tree segmentation image. (b) Vessel tree centerline identification image.

2.2 Optic Disc Location

The optic disc is the region that presents the highest variation of intensities
of adjacent pixels in comparison with the rest of the eye fundus. This scenario
can disturb the characteristics of the visualization of the vascular structures, a
situation that can lead to misclassifications of the surrounding vessel positions
and, consequently, of the vessel segments. For that reason, the optic disc region
is frequently excluded for the analysis of the retinal vessel tree, as is our case.

To achieve this, we implemented an algorithm based on the work proposed
by Blanco et al. [28], given its simplicity and the satisfactory results that were
obtained for this issue in classical retinographies. Firstly, two Gaussian filters
were applied at different scales with a blob operator to identify a region of
interest that contains the optic disc. Then, the edges are calculated using the
Sobel edge detector [29]. Finally, we extract the optic disc region using the Fuzzy
Circular Hough transform [30]. Figure 5(a) shows an example of the optic disc
extraction, where r represents the radius of the located optic disc.

In many cases, not only the optic disc but also its contiguous region may
include significant intensity changes, being this area of the image biased to bright
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intensities. As mentioned, this situation can lead to misclassifications of its con-
taining vessels as arteries and veins in posterior stages of the method. To solve
this problem, we remove a circular region centered on the optic disc with a radius
of 1.5×r (being r the radius of the identified optic disc), as shown in the example
of Fig. 5(b), excluding sufficient region to guarantee the posterior analysis in the
desired conditions.

Fig. 5. Example of the optic disc location. (a) Optic disc detection, where r represents
the radius of the optic disc and 1.5 × r represents the brightness contiguous region to
be removed. (b) Removal of the optic disc region in the segmented vasculature image.

Fig. 6. Steps of the artery/vein vessel classification stage.

2.3 Artery/Vein Vessel Classification

In this stage, we perform the automatic classification of the identified retinal
vasculature into arteries and veins. To achieve this goal, we divide this stage
into three constituent steps, as represented in Fig. 6. These steps are herein
progressively detailed.
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Profile Extraction. Firstly, we obtain the vessel profiles in the original NIR
retinography image, profiles that are posteriorly used in the process of the blood
vessel classification. To achieved that, we based our strategy in the proposal of
Vázquez et al. [20]. In particular, for each point P of the vessel centerlines, we
obtain four equidistant vessel points Pi. These points are used as reference to
obtain their corresponding perpendicular lines that are limited by both vessel
edges. The vessel intensities over these perpendicular lines determine the vessel
profile that is analysed to classify the referenced point, P . This strategy is applied
over the entire vascular structure. Figure 7 shows a representative example of
the vessel profile extraction, including the representation of the extraction of
the perpendicular lines.

Fig. 7. Example of the vessel profile extraction. (a) Overlap between the result of the
vessel segmentation and the NIR retinography image. (b) The four yellow lines, that
are perpendicular to the vessel centerlines, identify the vessel profiles at the points that
are posteriorly used in the classification process. (Color figure online)

Artery/Vein Classification. In this second step, we use a machine learning
approach to discriminate the retinal vessel tree between these two types. Nor-
mally, the arteries and veins are distinguished according to its branching pat-
tern and morphology. In this work, the vectors of characteristics are obtained by
means of the method proposed by Grisan et al. [31] that consist of two compo-
nents:

– μ(H) (from HSL color space).
– σ2(R) (from RGB color space).

For the classification task, we selected the k-means clustering algorithm [32],
given its simplicity and computational efficiency. This unsupervised learning
strategy was used to calculate the centroids for each of the two clusters using
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the feature vectors as input. As result of this approach, each vascular position
of the vessel centerline is categorized as belonging to an artery or vein. In Fig. 8,
we explain the result of the classification method where the red points describe
arteries whereas blue points indicated veins.

Propagation. In the third and last step, a post-processing strategy is applied
using the anatomical knowledge of the retinal vascular structure to identify and
correct the possible misclassifications of the individual vessel points. Many times,
the vascular points that belong to the same vascular segment can be classified
into different categories (see Fig. 9). This particular situation can be caused by
possible changes in the brightness profiles, speckle noise or the presence of small
capillaries, situations that are frequently present in this type of images and that
typically produce these attenuations.

Fig. 8. Example of A/V classification. (a) Results of A/V classification in the entire
vascular structure. (b) Red points represent arteries whereas blue points are veins.
(Color figure online)

To decrease the influence of these misclassifications, using the context of the
classifications, a voting process is carried out in the entire vascular segment.
To achieve this, a voting process over each vascular segment is done. Then, the
category with the higher number of votes is considered the winning class and,
consequently, propagated to all the vessel points of the same vascular segment.
In Fig. 10, we can see a representative example of the final classification of the
retinal vessels into arteries and veins after using the propagation step.

3 Results and Discussion

The proposed method was tested using a dataset of 30 OCT scans of different
patients including their corresponding NIR retinography images. These images
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Fig. 9. Example of propagation of the winning class by a majority vote of all the points
of the same vascular segment. (a) Vascular segment without propagation. (b) Vascular
segment with propagation.

were taken with a confocal scanning laser ophthalmoscope Spectralis R© OCT
(Heidelberg Engineering). The OCT scans are centered on the macula, from both
left and right eyes of healthy patients and presenting a high-resolution. The local
ethics committee approved this study, which was conducted in accordance with
the tenets of the Helsinki Declaration.

In order to test the performance of the proposed work, the OCT images were
manually labelled by an expert clinician, identifying the arteries and veins. The
dataset is composed by a total of 597 vascular segments. Next, this dataset was
randomly divided in two subsets with the same size, one for training and the
other for testing.

The proposed method was evaluated using the following metrics: Accuracy,
Sensitivity and Specificity (Eqs. (2), (3) and (4), respectively). These measure-
ments use as reference the true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) using the artery and vein classifications. In this
work, we consider TPs as correctly identified arteries, whereas TNs as correctly
identified veins.

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Firstly, the classification system before the propagation step was evaluated
over all the vessel points of the retinal vessel tree. Figure 11 shows the confusion
matrix that is associated with the mentioned manual labelling of the expert clin-
ician. Moreover, Table 1 summarises the performance of the proposed method.
As we can see, the results provide a good balance between Accuracy, Sensitiv-
ity and Specificity (88.54%, 90.50% and 86.66%, respectively). We also have to
consider that these OCT scans are normally taken over the macular region, as is
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Fig. 10. Final result of the A/V classification stage. (a) Final result of the classification
process with propagation applied to all the vascular segments. (b) Final result of a given
vascular segment with propagation.

Fig. 11. Confusion matrix in the A/V classification process without propagation.

the case of all the images of our dataset, region that normally contains smaller
vessels in comparison with other parts of the eye fundus, reinforcing the anal-
ysis of the obtained performance. Additionally, a ROC curve was performed to
compare the results of Sensitivity and Specificity, obtaining an Area Under the
Curve (AUC) of 0.886 (see Fig. 12).

Then, the classification approach that includes the propagation stage was
evaluated in all the vessel coordinates that were included in the study.
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Table 1. Accuracy, specificity and sensitivity results in the A/V classification process
without propagation.

Accuracy Sensitivity Specificity

88.54% 90.50% 86.66%

Fig. 12. ROC curve with the results of the classification process without propagation.

As mentioned, the propagation stage identifies and corrects the possible misclas-
sifications of the vessels points in the same vascular segment. Table 2 presents the
results of the comparative analysis through Accuracy, Sensitivity and Specificity
(90.10%, 91.67% and 88.59%, respectively). As we can see, the results from the
proposed method including the propagation step are satisfactory. In addition,
Fig. 13 shows the ROC curve obtained by the proposed system, with an area
under the curve of 0.901, reinforcing the validity of the designed methodology.

Table 2. Accuracy, specificity and sensitivity results in the A/V classification process
with propagation.

Accuracy Sensitivity Specificity

90.10% 91.67% 88.59%

Despite the non-existence of any other proposal for the same image modal-
ity, we compared the proposed system with other reference approaches of the
literature that were proposed for classical retinographies. The results of this
comparison are shown in Fig. 14. As we can see, our proposed method offers a
competitive performance, outperforming the rest of the strategies, considering
that each one was tested in their particular conditions and datasets.
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Fig. 13. ROC curve with the results of the classification process using propagation.

Fig. 14. Vessel classification performance comparative between different techniques of
the literature and our proposal.

Figure 15 shows a representative example illustrating the final result of the
proposed methodology. As we can see, the method offers accurate results, pro-
viding information that can be easily analysed by the experts clinicians in their
daily practice.
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Fig. 15. Example of final result of the proposed methodology. (a) NIR retinography
image. (b) Removal of the optic disc region and segmentation of the vasculature image.
(c) Vessel tree centerline identification image. (d) Final result of the vascular segment
with propagation.

4 Conclusions

The retina is the only tissue of the human body where the morphological infor-
mation of the blood vessels can be directly obtained non-invasively and in vivo. A
precise identification and characterization of the retinal vasculature and poten-
tial interesting biomarkers facilitate the diagnose, prevention and treatment of
many systemic diseases, such as hypertension, diabetes or arteriosclerosis, among
others, that significantly modify and damage the blood vessels architecture.

The CAD systems are increasing its relevance in the daily clinical practice,
many of them also including the analysis of many medical image modalities, facil-
itating the doctor’s analysis and diagnosis. Hence, these systems are developed
to assist the clinical experts and simplify their work of detection and interpre-
tation of characteristic pathological patterns that are typically present in the
medical images of interest.

Among all the modalities, the OCT imaging is a non-invasive medical image
modality with a high-speed capture process (being taken in real time) that
provides a three-dimensional image of the biological tissues of the eye fundus
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with micron-level resolution. These specifications enable a precise evaluation
and detection of slight modifications in the retinal microcirculation structure.

In this work, we present a new computerized system for the automatic retinal
vasculature extraction and classification into arteries and veins using the NIR
retinography images. These images are taken in combination with the histolog-
ical sections in the OCT scans. To identify and classify the vessel structures,
the proposed method analyzes the characteristics of each point of the vascular
tree structure. The strategy combines the application of the k-means clustering
technique with the feature vectors that were obtained from the extracted vessel
profiles.

To validate the proposed methodology, we used 30 OCT scans of different
patients including their corresponding NIR retinography images. From this OCT
image dataset, 597 vessels were identified and manually label by an expert clin-
ician. As result, the proposed method provided an accuracy of a 90.10% in the
classification process. This satisfactory performance was achieved with the com-
plete version of the method including the application of the propagation stage.
Finally, we performed a comparative analysis with similar proposals that are
present in the literature. This review emphasized the relevance and efficiency of
the proposed method, comparatively with the rest of the approaches.

Although the favourable obtained results, we expect to reinforce the pro-
posed methodology. In that sense, as future works, we aim to improve the dif-
ferent phases of the method to increase the success rates. In particular, we plan
to extend the methodology with the inclusion of a more heterogeneous set of
features as well as different testing classifiers to increase the performance of the
method. Further, future plans include the design and implementation of an auto-
matic method for the AVR calculation as a relevant biomarker, among others
of interest. This way, we take the opportunity of having identified and catego-
rized the arterio-venular tree to derive useful interesting biomarkers for being
provided to the specialist. Finally, a CAD system could be developed to combine
this methodology with an automatic detection of other eye-related diseases, such
as the diabetic retinopathy.
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Abstract. In this paper, the difficult task of detecting fishes in under-
water scenarios is analyzed with a special focus on crowded scenes where
the differentiation between separate fishes is even more challenging. An
extension for the Gaussian Switch Model is developed for the detection
which applies an intelligent update scheme to create more accurate back-
ground models even for difficult scenes. To deal with very crowded areas
in the scene we use the Flux Tensor to create a first coarse segmentation
and only update areas that are with high certainty background. The spa-
tial coherency is increased by the N2Cut, which is a Ncut adaption to
change detection. More relevant information are gathered with a novel
blob tracker that uses a specially developed energy function and handling
of errors during the change detection. This method keeps the generality
of the whole approach so that it can be used for any moving object. The
proposed algorithm enabled us to get very accurate underwater segmen-
tations as well as precise results in tracking scenarios.

Keywords: Change detection · Background subtraction ·
Video segmentation · Underwater segmentation · Tracking

1 Introduction

The detection of objects in videos has already a long history in computer vision
but still is a very relevant topic today due to new developments such as self-
driving cars or robot-aided production which demand a detection in real time and
with high precision. In this paper, we address the specific topic of the segregation
of a video into two parts, the static background and the moving foreground. This
is an important first step in a computer vision pipeline since moving objects are
almost always the most interesting part of a scene. In the second part of the
paper, a tracking new algorithm is proposed that operates only on the detected
foreground blobs and can extract valuable high-level information from the scene.1
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To detect these moving objects we assume a static camera, so that stationary
objects also appear stationary in the video. This makes it possible to create a
model of the static background of the scene, e.g. with statistical methods, and
every object that does not fit the model is therefore labeled as a moving object.
In recent years many of these background modeling and subtraction algorithms
have been proposed, but as the tasks and applications of these methods are as
plentiful as the suggested algorithms there is still a lot of research to be done.

In this paper, we focus on crowded scenes which pose a particularly difficult
task for background subtraction algorithms since the permanent exposure to
foreground objects often leads to an adaption of the background model to these
foreground objects, especially when they are all similar in color like the fishes in
a swarm. To cope with this we introduce pre-segmentations created with a Flux
Tensor-based optical flow which are used to exclude parts of the current frame
from the updating process of the background model. These parts are very likely
to be foreground since they are in motion and therefore excluding them limits
the background modeling to the background parts of the scene.

Furthermore, we enhance the Gaussian Switch Model approach proposed in
[1] with the Mixture of Gaussian idea, a foreground model and an intelligent
updating scheme to make it overall more robust for difficult scenarios. The fore-
ground model proved to be particularly useful with fish swarms because there
the difference between the different foreground objects was minor and thereby
the time for the model to adapt to a new object was negligible. Lastly, since the
approach so far is solely pixel-based, a spatial component was added to make
the segmentations coincide with the edges in the frame and better conform to
the smoothness of natural images.

To extract more information from the scene, like the directions of movement
or speeds of the objects, a tracking algorithm is proposed that uses only the infor-
mation from the segmenter by applying a special energy function. To account for
segmentation errors or (semi-)crowded scenes where fish swim in front of each
other, the unification and splitting of these foreground blobs is also considered
in the tracking process so that overall very accurate (but not precise) tracking
results can be achieved.

2 State of the Art

Background modeling and subtraction has been used in computer vision for a
long time already. The first approaches date back to the beginning of the 90ths [2]
and commercial applications followed soon. An example is the Patent [3], where
background subtraction is used for video compression. The most frequently used
approaches in recent years have been statistical methods that use Gaussians to
model each pixel of the background. It started with the Single Gaussian approach
[4] where one Gaussian distribution is used to describe one pixel-value. They are
usually updated with a running Gaussian:

mt+1 = αmt + (1 − α)p. (1)
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Here mt is the mean of the Gaussian at the time step t,p is the pixel value taken
from the current frame and α ∈ (0, 1) is the update rate.

However, this simple method is not sufficient to model difficult scenes – e.g.
permanent exposure to many foreground objects or slightly moving background
objects – and therefore in [5] an algorithm was proposed which does not use
only one Gaussian but a mixture of several Gaussians. This proved to be a very
effective way of modeling the background and is henceforth used with great
success in combination with other methods. Together with a Markov Random
Field the Mixture of Gaussian (MoG) is used in [6] and can generate great results
on the Wallflower dataset. In conjunction with an optical flow, the Flux Tensor,
it is used in [7] and achieves state of the art results on the changedetection.net
dataset.

Another approach is to keep a set of samples for each pixel instead of directly
modeling a probability distribution. The ViBe algorithm in [8] keeps and updates
the samples for each pixel randomly so that even old values can have an influence
on the current segmentation (although with a decreasing probability). Further-
more, the updating process diverges spatially so that an update of one sample
can influence the neighboring samples which makes the model spatially coherent
to some degree. The segmentation itself is done by counting the number of values
that agree with the current value.

There are also approaches which automatically combine whole segmentations
of various methods in a way that the output is better than each individual input.
A current approach is [9] which uses the large database of different segmentations
of the changedetection.net dataset and combines the best performing of them.
The fusion process itself is not done by a Bayesian Model, as in the other cases,
but with a genetic algorithm. The genetic algorithm has the segmentations and
a set of functions it can apply to them and tries to find the best combination.
These functions are e.g. morphological erosion or dilation, logical AND or OR
operations or a majority vote on the binary segmentations. In this way, it is
possible to improve the already very good results of the top algorithms. However,
to run their genetic algorithm ground truth data is necessary and, therefore, they
use one video of each category (and the corresponding ground truth data) to find
the best combination of segmentations and functions.

After the change detection, the next step is the extraction of valuable infor-
mation from these results, e.g. about the behavior of fish. To do this it is nec-
essary to associate the detected objects with found objects in the previous (and
succeeding) frames. With these associations, a tracking of individual objects can
be realized and allows the computation of movement speeds, paths and other
valuable higher-level features. Change detection is a very general approach and
not limited to a specific object type, nor has it the need for a learning phase
for every new object class. Therefore, the tracking approach used should be also
very general and not based on any object-specific features (e.g. eyes, faces, col-
ors, etc.). Furthermore, the similarity of the detected fish in a swarm can be a
great problem. When humans or cars are tracked there are usually quite notable
differences between objects, e.g. in the size (car or truck), color (blue jacket or
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green jacket) or shape (thin or big). These differences result in distinct features
for each object which can then be matched between different frames [10,11]. For
different fish of the same species – or even a swarm – these features have to be
expected to be very similar and additionally degraded because of the underwater
scenario. Another distinguishing attribute which is often used in in-air tracking
is depth, however, it is very hard to obtain depth information in underwater
scenes because of the refraction and absorption properties of water.

Based on this, the here presented tracking approach will solely rely on the
information contained in the segmentation provided by the change detection.
This allows a general usage of the approach in underwater scenarios as well as
in-air videos to track fish, cars, humans or any other moving object. The strategy
used here is in sharp contrast with most other tracking methods where a specific
object detector is trained, e.g. [12] uses Haar-like features and an SVM classifier
to detect humans. The tracking of any arbitrary foreground detections made
by a change detection approach can become extremely difficult, especially when
many objects are present in the scene at the same time and overlap each other.
However, this strategy preserves the generality of the overall approach and can
distinguish even between very similar objects.

3 Change Detection

The proposed change detection method consists of three steps. The first step
is the Gaussian Switch Model and its extension (eGSM), afterwards coarse seg-
mentations are derived from the Flux Tensor and used to improve the updating
of the eGSM in crowded scenes. The last part is a spatial approach which adapts
the segmented objects of the background subtraction to the edges in the image
by using a NCut based approach.

3.1 Gaussian Switch Model

The GSM was introduced in [1] and models the background of the scene with two
distinct Gaussian models for each pixel in the video. Of these two models, one
is updated conservatively (only parts classified as background are updated) and
one is updated blindly (the whole image is updated) which allows the method
to benefit from the advantages of both strategies.

The conservative strategy has the problem that rapid changes of the back-
ground will not get incorporated into the model, an example of this would be
a car that parks and therefore, after some time, should become a part of the
background model. The blind update strategy has the problem that the fore-
ground objects get included into the background model as well and especially in
scenes with a constant presence of foreground objects this can lead to a corrupted
background model.

The GSM now has models with both of these updating strategies and nor-
mally the one with the conservative updating strategy is used for the background
subtraction because it creates a clearer and more accurate background model in
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most situations. However, scenes in which the conservative update model fails
can be detected by a comparison of both models and if such a situation is detected
the model is switched to the blindly updated one.

3.2 Extension of the GSM

The extended GSM combines the original approach with the Mixture of Gaussian
idea. This increases the accuracy further, especially in difficult situations like
the underwater scenes we use for evaluation later, but it also makes the whole
approach more complex.

Instead of using two Gaussians we apply two Mixture of Gaussian (MoG)
models and update one of them conservatively and one blindly, similar to the
GSM. A foreground model was added with a high adaption rate to quickly adjust
to different moving objects in the scene. We chose a simple single Gaussian model
for this because it should not model different foreground objects at the same time
but only the most recent one.

Each of the two MoGs consists of a variable number of Gaussians and each
of them is described by three values: mean m, variance v and weight w. The
mean and variance describe the shape of the probability distribution and the
weight is a measure of how much data supports this Gaussian. To be considered
as a part of the background model a minimum weight is necessary, otherwise,
the Gaussian is assumed to belong to a foreground object which only appeared
shortly in the video. We define the minimum weight as a percentage of the sum
over all weights of a MoG and set the percentage to 1/#Gaussians.

The MoGs are updated by first searching for the Gaussian that matches the
current data the best and then applying the standard running Gaussian update
on them. For a pixel x with pixel-value px and update rate α the equations would
be the following

vx = α · vx + (1 − α) · (mx − px)2,
mx = α · mx + (1 − α) · px,

wx = wx + 1. (2)

The α value is specified dynamically according to the weight value of the Gaus-
sian in the following way

α =
1

wx
(3)

but it is capped at 0.5. Furthermore, to prevent an overflow of the weight value
and limit the impact of old values on the model, there is a decay of all weight
values in the MoG.

Together, this ensures that Gaussians which until now only got very few data
points to back them up or only old data points which are not reliable anymore
adapt quickly to new values. At the same time, Gaussians which were updated
frequently (and therefore have a high weight) will get a low update rate so
that they are not strongly affected by outliers. Because of this mechanism, the
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decay factor strongly impacts the value of α, especially in longer videos, and is,
therefore, the most important parameter. Based on empiric values it was set to
0.995 in all following experiments.

A new Gaussian will be created if no matching Gaussian could be found in
the existing MoG model, it has the initial values mx = px, vx = 0.01 and wx = 1.
Should there already exist the maximum number of Gaussians that are allowed,
the Gaussian with the lowest weight will be deleted and replaced with the new
one. The foreground model is also updated as a running Gaussian but with a
fixed αF value as there is no weight value in the Single Gaussian model. Also, the
update rate is higher than in the background models so that it generally adapts
quickly to new foreground objects. We set it to αF = 0.64 for our experiments.

Nonetheless, before the updating process of any model starts, the segmen-
tation will be done with the existing model and based on this result the differ-
ent models will get modified accordingly. The blindly updated MoG is updated
every time regardless of the segmentation result. The conservative MoG only gets
updated when a pixel was classified as background and the foreground model
only when the pixel was marked as foreground. The segmentation itself is cre-
ated by comparing the current frame with the two MoGs. However, only the
Gaussians that have a weight that exceeds the minimum weight are considered
part of the background model. If for any of these Gaussians the inequality

exp
(

−
∥∥∥ 1

β
· p̄x − m̄x

v̄x

∥∥∥
2

2

)
> 0.5 (4)

is true, the pixel value and the MoG are classified as a match. The vectors
p̄x, m̄x and v̄x contain the values of the three channels of the pixel x and the
operations between them are all element-wise. The variance as a divisor makes
the thresholding process adaptive so that it is less sensitive if the video contains
less noise and vice versa. The value β in the inequality is a parameter controlling
the general sensitivity of the approach and we set it with 0.5 quite low since the
foreground objects are often quite similar to the background and therefore a
high sensitivity is necessary.

If a pixel matches with Gaussians in both MoGs, it will be classified as
background. If it only matches with one of them the foreground model is taken
as a tiebreaker. The foreground model is compared to the pixel value according to
the inequality (4) and if they coincide the pixel marked as foreground, otherwise
as background.

Similar to the original GSM algorithm, there is a switching between the
conservatively updated MoG and the blindly updated MoG to compensate for
the weaknesses of conservative updating scheme. Such an event should occur
when there is an area in the scene which is static and constantly classified as
foreground, because then an error in the background modeling happened with a
high probability and should be corrected.

To detect such an error two conditions are checked. First if the blindly
updated MoG and the foreground model are similar as this indicates that the
pixel has been classified mainly as foreground in the recent past. If
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mBG,k − mFG <
vFG

2
(5)

holds for all three channels of a pixel the models are considered similar. Here
mBG,k is the mean of the k-th Gaussian of the conservatively updated MoG
and it is sufficient if the inequality is true for one of the Gaussians of a pixel.
This similarity could also occur when there appear many foreground objects in
a short period of time. To filter these events out the variance can be used since
foreground objects usually generate higher variations in the image due to their
movement. Hence the second conditions is a small variance and the threshold is
set to the median of all variances of the completely updated MoG. If both of
these conditions are fulfilled (inequality 5 and small variance) an error in the
conservatively updated MoG is very probable and therefore the blindly updated
MoG is used in these cases.

Lastly, if two Gaussians in one MoG get very similar over time these Gaus-
sians should be unified as they are modeling the same object. The similarity is
checked with

‖m̃G1 − m̃G2‖22 < min(‖ṽG1‖22, ‖ṽG2‖22) (6)

and if the inequality holds, both old Gaussians are deleted and a new Gaussian
created with the following values

mnew =
wG1mG1 + wG2mG2

wG1 + wG2
,

vnew =
wG1vG1 + wG2vG2

wG1 + wG2
,

wnew = wG1 + wG2. (7)

Altogether, this extension of the standard GSM leads to a more robust and accu-
rate model building process since now several different objects can be represented
by the model at the same time and the update rate adapts itself automatically
based on the confidence the model has in the data. Three examples of modeled
backgrounds can be seen in Fig. 1.

3.3 Flux Tensor as a Pre-segmentation

Two-dimensional structure tensors have been widely used for edge and corner
detection in images. With computational efficient filters information of deriva-
tives of the image are extracted and used to detect edges or corners. Motion
information can be recovered in a similar way, but here a three-dimensional
tensor is necessary which is applied on the image volume of a video.

For the location p = (x, y, t) in an image volume the optical flow v(p) =
[vx, vy, vt] is usually computed with the formula

∂I(p)
∂x

vx +
∂I(p)
∂y

vy +
∂I(p)

∂t
vt = 0 (8)
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Fig. 1. The top row depicts three background models created with the extended GSM
and below that are the corresponding original frames from the video. The background
models are visualized by taking the Gaussian with the highest weight of the conserva-
tively updated MoG and displaying the mean of it. (images from [13]).

which leads to an eigenvalue problem that is costly to solve. To extract the
valuable motion information without solving the eigenvalue problem the flux
tensor was proposed in [14] and is defined by

∫

p∈Ω

(∂2I(p)
∂x∂t

)2

+
(∂2I(p)

∂y∂t

)2

+
(∂2I(p)

∂t∂t

)2

dz =
∫

p∈Ω

‖ ∂

∂t
∇I(p)‖2dz, (9)

for the pixel p and a small area Ω around it. By computing the Flux Tensor,
one value per pixel is obtained which represents the magnitude of motion in that
area (but not the direction of the movement) and this can be thresholded to get
a binary segmentation.

However, the Flux Tensor has difficulties segmenting the interior of the
objects that are uniform and often only detected the edges. To cope with this
behavior a density-based spatial clustering is applied after the thresholding and
then a convex hull created around these clusters of foreground detections. Over-
all, moving objects are detected quite reliable but their shapes are not very
accurate (see Fig. 2).

Despite this lack in accuracy, the flux tensor has the advantage to be available
without a learning phase. The eGSM has an elaborated learning algorithm but
there still exist problems in very crowded scenes. The cause for this is inherent
in the modeling of the background: it works under the assumption that the
background objects are visible most of the time and will, therefore, adapt to the
objects that appear the most.

This assumption is true in almost all of the background subtraction scenarios
and works very well. However, in some of our scenes, there is a fish swarm in a
certain area so that in the majority of the time fishes are visible there and not
the real background. Therefore, the background model would adapt to the color
of the fishes and not to that of the background. To solve this problem areas with
high movement (detected by the Flux Tensor) are masked for the updating of the
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Fig. 2. The Flux Tensor on two examples. The image in the middle shows the result
of the Flux Tensor, higher intensities depict higher movement. On the right side is
the segmentation after clustering and building a convex hull around the foreground
clusters. The noise is due to the Marine Snow (small floating particles). The images
are taken from [13].

background model. Thereby, areas with a high probability of being foreground
are not updated since it would only train the model with false information.

The principle is similar to that of the conservative updating scheme which
excluded pixels that are classified as foreground from the updating. However,
this does only work if the background model is already accurate and a good
segmentation can be provided. The pre-segmentations now help with the initial
creation of an accurate background model since they do not need any training
phase. An example of this effect can be seen in Fig. 3.

Fig. 3. Effect of the Flux Tensor on the background modeling. In the top row (left to
right): the original frame and the visualizations of the two background models with
and without pre-segmentation. The next row shows a close up in an area where many
fishes were passing by. The model created with pre-segmentations (left) has clearly less
artifacts of fishes and is also not as blurry. (images from [13]).



288 M. Radolko et al.

3.4 N2Cut

The whole approach to this point is completely pixel-wise and only uses the tem-
poral changes to detect foreground objects. However, natural images have spatial
properties that can be used to further improve the derived segmentations, e.g.
a certain degree of smoothness is always present and edges in the segmentation
should be aligned to edges of the frame since they often represent borders of
objects.

The N2Cut from [15] tackles this problem. It is based on a GraphCut with a
special energy function derived from the NCut energy function which is defined
as

NCut(A,B) =
Cut(A,B)
Assoc(A)

+
Cut(A,B)
Assoc(B)

,

Assoc(A) =
∑

i∈A,j∈A∪B

wij ,

Cut(A,B) =
∑

i∈A,j∈B

wij , (10)

where A and B are the sets of foreground and background pixels and wij is a
weight function. The weight between two pixel i and j is defined by the sum
over the three color channels

wij = |ri − rj | + |gi − gj | + |bi − bj |. (11)

If the pixels are not neighbors the weight is 0. Based on this, the N2Cut is defined
as

N2Cut(A,B) =
Cut(A,B)
nAssoc(A)

+
Cut(A,B)
nAssoc(B)

,

nAssoc(A) =
Assoc(A) + 1∑

i∈A,j∈A∪B,∃eij
1 + 1

. (12)

The Cut and Assoc values are here normalized by the number of elements that
contribute to them. Thereby, it still favors segmentations that are aligned with
edges in the image, similar to the NCut, but also is free of any bias for a certain
amount of background or foreground in the segmentation. The NCut has a bias
for segmentations with an equal amount of fore- and background which is not
desirable for video segmentation where often no foreground objects at all are
present in the scene.

A local optimization is applied to minimize this energy function over the
already existing segmentation derived from the background subtraction. A single
pixel d at the border between foreground and background is located and its
classification is changed. The new N2cut value, after changing d from set A to B
(or vice versa), can be computed very efficiently with just a few additions and
subtractions by using the following formulas

Cut(A \ {d}, B ∪ {d}) = Cut(A,B) +
∑

i∈A ∧ i∈N(d)

wid −
∑

j∈B ∧ j∈N(d)

wjd, (13)
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Assoc(A \ {d}) = Assoc(A) −
∑

i∈B ∧ i∈N(d)

wid, (14)

Assoc(B ∪ {d}) = Assoc(B) +
∑

i∈A ∧ i∈N(d)

wid. (15)

Here N(d) is the four connected neighborhood region of d. Thereby, the N2cut
value and the segmentation can be gradually improved without the high com-
putational cost of the global optimization of a cut value over a whole image. To
increase the range/effect of the minimization we apply it over several scales of
the image, starting with the smallest size and using the result from there as a
starting segmentation for the next scale. Overall, this proved to be an efficient
way to smooth the segmentation derived from the background subtraction and
align it to the edges of objects in the frame. An example is depicted in Fig. 4.

Fig. 4. The effect of the N2Cut method. On the left are the original images, in the
middle the segmentations after background subtraction and on the right is the result
after applying the N2Cut. (images from [13]).

4 Underwater Blob Tracking

To extract valuable information from the segmentations derived with change
detection, e.g. about the behavior of fish, it is necessary to associate the detected
objects with found objects in the previous and succeeding frames. With these
associations, a tracking of individual objects can be realized and allows the
computation of movement speeds, paths and other valuable higher-level features.
The first step in the building of this tracking method is a matching function that
evaluates how similar two foreground detections are.

4.1 Matching Function

At first, all components in the binary segmentations must be extracted so that
they can then be matched against each other. For this, a random foreground
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pixel is chosen in the segmentation as the start of a new component. Then all
neighboring foreground pixels are added to this component and this is repeated
for all newly added foreground pixels until no further foreground pixels can be
added and then a new, so far unused, pixel is chosen to start the next component.
These components will be called connected components since each pixel in it can
be connected to each other pixel in that component by a path. Each of these
connected components has a list of properties that is used to compare them
against each other, these properties are:

– Height and width of the bounding box in pixels – BBh,BBw
– Number of pixels that belong to that connected component – NoP
– Coordinates of the centroid of the connected component – (Cx,Cy)
– Velocity in pixels per frame (of the whole component) – V el
– Direction of movement (of the centroid) – (Dx,Dy)
– Growth rate: change of the NoP in pixels per frame – GR
– Center point of the bounding box – BBx,BBy

All properties that rely on a trend/history are initialized as zero (velocity, growth

rate) except the direction of movement which is initialized as Dx =
√

1
2 and

Dy =
√

1
2 . Between two matched components these values can then be com-

puted, e.g. the GR is defined as the change in the NoP between two components.
With this information, the properties get updated in the fashion of a running
Gaussian with each new match. The GR will be updated in the following way

GRn = α · GRn−1 + (1 − α) · NoPn − NoPn−1, (16)

with α chosen as 0.9. In this way, one wrong detection of a component does not
completely change these parameters, but they can still quickly adapt to changes
(in around 5 to 10 frames).

The other values can be directly inferred from the connected component
itself. With these properties, a measure of similarity between two components
can be derived which will be called Connected Component Similarity Measure
(CCSM) in the following. To compute the CCSM it is assumed that two con-
nected components (CC1 and CC2) are from consecutive frames. The lower the
CCSM value, the more likely it is that these components represent the same
object of the scene and vice versa. The first part of the CCSM is defined as

CCSMa = |BBh1 −BBh2| + |BBw1 −BBw2| +
√

|(NoP1 + GR1) −NoP2|
(17)

+ |(Cx1 + Dx1 · V el1) − Cx2| + |(Cy1 + Dy1 · V el1) − Cy2|
(18)

+ |(BBx1 + Dx1 · V el1) −BBx2| + |(BBy1 + Dy1 · V el1) −BBy2| .
(19)

In 17 the sizes of the different bounding boxes are compared under the assump-
tion that they should be very similar if the connected components are repre-
senting the same object in consecutive frames. In the next line, the number of
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pixels is evaluated where NoP1 + GR1 is the estimated number of pixels in the
next frame and should, therefore, be close to NoP2. Then the 2nd root is taken
of that value because it describes a two-dimensional property (the pixels can lie
in x- and y-direction) whereas the other values describe one-dimensional values
(e.g. length of the bounding box in x-direction). In 18 the positions of the Cen-
troids are compared and Cx1 + Dx1 · V el1 is the estimated x-coordinate in the
next frame which is compared to Cx2. It should be noted that the direction of
movement is always scaled so that ‖(Dx,Dy)‖2 = 1 and therefore Dx ·V el is the
estimated movement in x-direction in pixels per frame. A similar comparison is
done in 19 with the middle point of the bounding box.

One important aspect that is missing from the CCSM so far is the shape
of the detected foreground object. For this, the bounding box of the connected
component is taken and its coordinate system is transferred to polar coordinates
in a new frame with a fixed size of 360×360. For this, the center of the bounding
box is taken and from there the image is sampled in 360 different angles with a
sampling rate of 360.

In order to compare the shapes of two connected components, both are trans-
ferred to polar coordinates and then five different scores are computed. These
scores work under the assumption that the same detected foreground object in
two consecutive frames has a barely changed 3D rotation and pixel size, that
means, for example, that the distance and angle to the camera are similar in
both frames. Therefore, the aim of this shape comparison is not to be rotational
and size invariant in contrast to most of the recent work in shape recognition
where exactly this is the objective [16,17]. In this scenario, since fish have very
similar shapes, especially if they are of the same species, the rotation of the fish
in the scene can be an important indicator to differentiate between fish in an
underwater scene and should be used.

The first shape feature that is computed is the percentage of detections (or
non-detections) that do not match in both polar images and it can be seen as a
general measure of the similarity of the two detected objects. Let PI1 and PI2

be the binary polar images of two connected components and PI(ξ,l) the value
at angle ξ and length l, the shape feature is then defined as

Sha = 1 −
[ s∑

ξ=1

s∑
l=1

g(PI1(ξ,l), P I2(ξ,l))
]
/s2, (20)

with

g(x, y) =

{
1 ifx = y

0 else
or g(x) =

{
1 ifx = 255 (foreground)
0 else

. (21)

The s in the equation comes from the size of the polar images and is 360 since
the polar images are sampled to be 360 × 360. The second feature is based on
a comparison of the number of foreground pixels per angle of the two frames.
Since no rotation is assumed the same object should have a similar extension in
each angle in both frames, this is checked with:
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Shb =
s∑

ξ=1

∣∣∣∣
s∑

l=1

g(PI1(ξ,l)) −
s∑

l=1

g(PI2(ξ,l))
∣∣∣∣/s2 (22)

The third and fourth features are similar but evaluate each pixel separately and
give them different weights based on their distance to the center of the original
detection. The third feature focuses on pixels close to the center and the fourth
on pixels at the outside. Furthermore, the standard Euclidean metric is applied
so that outliers have a stronger impact.

Shc =
s∑

ξ,l=1

∣∣∣∣
l

s
· g(PI1(ξ,l)) − l

s
· g(PI2(ξ,l))

∣∣∣∣/
s∑

l=1

l (23)

Shd =
s∑

ξ,l=1

∣∣∣∣
s − l

s
· (

g(PI1(ξ,l)) − g(PI2(ξ,l))
)∣∣∣∣/

s∑
l=1

l (24)

The last shape feature compares the contours of both connected components.
First, both polar images are reduced to their edges. The result of this is the
binary contour/edge images Cont1 and Cont2 with the same dimensions as PI1.
Afterwards, the contours are compared by computing for each angle the minimal
distance in pixels from a contour pixel in one of the connected components to
any contour pixel in the same angle in the other connected component. It is
computed in the following way

She =
1
2s

s∑
ξ,l=1

g(Cont1(ξ,l)) min
l2=−s...s

g(Cont2(ξ,l2))>0

|l−l2|+g(Cont2(ξ,l)) min
l2=−s...s

g(Cont1(ξ,l2))>0

|l−l2|,

(25)
where first Cont1 is compared with Cont2 and then the other way around. The
term g(Cont1(ξ,l2)

, 1) is just a check whether the binary contour image is true or
false at that position. Furthermore, there appear negative length values in this
expression and they imply that the original connected component is scanned in
the opposite angle and therefore:

Cont(ξ,−l) = Cont(β,l) with β = (ξ + 180) mod 360. (26)

Finally, with these five shape features the shape component of the CCSM can
be easily derived,

CCSMb =
√ ∑

k∈{a,b,c,d,e}
Sh2

k. (27)

After the first two components that compared general properties and the shapes,
the third and last component of the CCSM focuses on outlier detection. It pre-
vents the matching of connected components that are e.g. in completely different
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parts of the frame or have very different sizes but are otherwise very similar. This
is done by using the exponential function so that a large disparity in one param-
eter dominates the whole CCSM value. Otherwise the computation is resembling
calculation of the first component (CCSMa) with the Eqs. 17 to 19. It is defined
as

CCSMc = (28)
exp

(|Cx1 + Dx1 · V el1 − Cx2| − z
)

+ exp
(|Cy1 + Dy1 · V el1 − Cy2| − z

)

(29)
+ exp

(|BBh1 −BBh2| − z
)

+ exp
(|BBw1 −BBw2| − z

)
(30)

+ exp
( |BBx1 + Dx1V el1 −BBx2| − z

)
+ exp

( |BBy1 + Dy1V el1 −BBy2| − z
)

(31)
+ exp

( |(NoP1 + GR1) −NoP2|
)
, (32)

where z is a parameter that was set empirically and is based on the image size

z =
√

FrameHeight · FrameWidth

25
. (33)

The subtraction of z in conjunction with the exponential function ensures that
only properties which are very different (outliers) contribute substantially to the
CCSMc component. For example, if the heights of the bounding boxes are less
than z pixels apart, the element 30 will contribute less than 1 to the overall
sum. However, if the disparity is larger than z it will increase very quickly so
that basically all connected components where the difference is greater than z
will be rejected. The same applies to all the components of the CCSMc in the
lines 29 to 31 and in 32 it is checked whether the overall number of pixel is not
changing by more than 15% in consecutive frames. With these three components,
the final CCSM is computed in the following way

CCSM = CCSMb · CCSMa + CCSMc. (34)

The multiplication of the values CCSMa and CCSMb ensures that both values
are important for the matching, even though the CCSMb is usually much smaller
than the CCSMa. The CCSMc should always be very small for correct matches
and its only purpose is the rejection of wrong matches.

4.2 Optimal Match Finding

To now compute the best matches between the connected components of two
frames according to the CCSM , the first step is the creation of a list of all
connected components for each of the two frames. However, it has to be con-
sidered that two connected components in on frame can merge into one larger
component in the next or vice versa. This can be caused by two or more fish
swimming in front or behind each other but also by segmentation errors of the
change detection approach, two examples of this can be seen in Fig. 6. To take
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this into account, not only the single connected components are considered but
also the unifications of two or more connected components that are close to each
other. This means that if three connected components are near to each other,
that the three single components would be considered for matching but also the
three possible different unions of two of them as well as the union of all three of
them.

There exist methods for the task of computing the best overall matchings
between two frames, e.g. the Hungarian Method which was originally introduced
by Kuhn in [18] and is still often used today [19]. However, since the matching
method applied here should also take unions and splits of connected components
into consideration, it cannot be used. To find the globally best matching between
two frames gradually matching components (e.g. greedy approach) will not be
enough, the algorithm must look at all objects and their possible matches at the
same time. When splits and unions are allowed this becomes extremely difficult
since each component can be a part of many splits and/or unions. Therefore, an
adaption of this method that takes unions and splits into account is probably
not feasible. The here presented method focuses on finding a local optimum in
a shorter runtime.

Considering the possibility of unions of separate connected components
makes the handling of splits and merges more accurate but can also be very
computational intensive when many smaller components are close to each other.
For n components the number of possible combinations is

n∑
k=1

(
n

k

)
=

n∑
k=1

n!
(n − k)! · k!

, (35)

which means e.g. 15 combinations for n = 4 or 31 for n = 5. If many small objects
are expected in a scene and time is a concern, it is, therefore, advisable to limit
the number of possible unions, e.g. by only considering unions of at most two
or three components. To be considered for a union the connected components
must be close enough together. Here the minimal distance between the borders
is important since that is the region where a split or merge would most likely
happen. Therefore, to be considered close, two pixels have to exist (one from each
connected component) that have a distance of less than TCCdist pixels between
them. The threshold is dependent on the resolution of the video and, therefore,
it is set to TCCdist = z (compare with Eq. 33).

A union of two or more connected components consists of all the pixels that
belong to each of the connected components which are combined. Therefore, the
same properties can be derived as for a connected component, e.g. bounding box,
number of pixels and so on. Values like the growth rate, direction of movement
or velocity are averaged over all connected components weighted by their size.
For example, the velocity of a union of t connected components would be

V elunion =
1∑t

s=1 NoPs

·
t∑

k=1

NoPk · V elk. (36)
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With these properties defined, the unions can be compared to connected com-
ponents or other unions by using the CCSM . The only new thing about the
unions is that they also have a list of all old connected components they are
composed of. This is important in case the union splits later again so that the
old connected components can be matched correctly again.

When for each of the two frames (between which the matches have to be
found) a list of all connected components and possible unions is created the
actual matching can start. For this, the CCSM is computed for every possible
match. That means if the list for the first frame has length t and for the second
frame length s, a t × s Matrix of CCSM values is created. Now, let the entry
(k, u) be the lowest value in the whole matrix, this means that the connected
components k (from frame one) and u (from frame two) are the best possible
match at the moment and will be assigned to each other. These two values and
all unions that include one of them – or, if they are unions already themselves,
all connected components that belong to them and unions that include at least
one of them – have to be deleted from the matrix and then the process can be
repeated. This is depicted in Fig. 5 where the row and column corresponding to
the element (k, u) get deleted and two other elements – indicated in dashed lines
– also get deleted because the corresponding elements contain the just matched
elements k and l and therefore a matching in the next step is not possible.

By repeating this process all connected components from frame one can be
matched with corresponding components in frame two and then the elements in
frame two can be similarly matched with the components found in the next frame
(frame three) and so on. By choosing the relatively simple greedy approach the
time for the optimization, after computing the CCSM values, is neglectable. More
elaborated optimization approaches would have to take into account the overall
matching costs for all connected components between several frames at the same
time. This optimization would be computationally very expensive, require the
processing of whole batches of frames (which prohibits any online usage) and
promises little accuracy improvement since parameters that include combined
information from several frames are already included in the CCSM (e.g. velocity
or direction of movement).

Fig. 5. A correlation matrix between the s elements in frame one and t elements in
frame two, that means at position (i, j) is the value CCSM(i,j). The element (k, u) has
the lowest value (is the best match) and for any further matching all components that
include elements from k or u have to be deleted.
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In normal situations, this matching works very well but specific situations
can be problematic, e.g. if a new fish appears it cannot be matched since there
are no prior detections and hence the connected component of that fish has to
be treated differently. In the following, these special cases and their handling are
discussed.

4.3 Special Cases

A different number of connected components in two consecutive frames does
not yet mean that a new fish appeared or an old one disappeared; sometimes
a bad segmentation splits a fish in two and thereby generates two connected
components instead of one or two fish swim close to each other so that their
connected components merge to one. These cases can usually be handled by the
algorithm already because it tries to match also unions of connected components
that are close by or expects a split of a connected component that was the result
of a merge in the past. However, if at the end there are still elements left over
which cannot be matched, they are handled as follows:

Leftover Elements in Frame One - Disappearance of an Existing Fish.
If an element in frame one is left over it will most likely correspond to a fish that
disappeared, e.g. by swimming out of the scene or swimming so far away from
the camera that it cannot be distinguished anymore from the background. To
avoid errors (e.g. by a missed detection), these elements will not immediately be
forgotten but especially tagged and added to the list of connected components
for frame 2. As it could not be matched it will not be shown as an element
in the result of frame two, but in the next step, there will be a trial to match
this connected component to a component in the following frame. Only if the
connected component could not be matched in five consecutive frames will it be
completely forgotten. This ensures that the disappearance of a fish is not just a
short time error in the segmentation but consistent over several frames.

Leftover Elements in Frame Two - Appearance of a New Fish. If a
connected component in frame 2 is left over, it will most likely correspond to the
appearance of a new fish but could also be a misdetection (e.g. of a shadow) or
an unfortunate split of an existing connected component. The last aspect will be
checked first by going through all found matches between frame one and two and
checking if the CCSM score can be improved by adding the leftover component
to any of the matches. That means uniting the matched component in frame
two with the leftover component and then computing the CCSM value with this
new component. Most of these unions are already evaluated in the first step of
the matching but sometimes the split of a connected component can happen so
awkwardly or the objects move so fast that the resulting new components are
already far away from each other and therefore a union of these two elements was
not checked in the previous step (because they were farther away than TCCdist).
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If an existing match could be improved by adding the leftover component, the
component will be added to that match and everything is done. Otherwise, a new
detection has to be assumed and will be added to the list of components in frame
2. However, similar to the previous case, this component will be tagged as new
and not shown in the results at first. It will only be fully accepted as an object
that has to be tracked if the connected components could be matched for five
consecutive frames. This makes the whole approach more resistant to errors in
the segmentation which is especially necessary since the wrong addition of only
one new component can strongly affect the tracking accuracy of the already
tracked objects in the scene.

Leftover Elements in Both Frames. If both events happen simultaneously,
an old connected component disappears and a new one appears, completely false
matches can occur since at the end a connected component in frame one that has
no true match is left over and also one component in frame two that has no true
match. To avoid that these two are matched falsely a threshold for the CCSM
has to be set so that all matches above this threshold will be rejected. Since the
CCSM score already entails an effective outlier detection (see Eqs. 29 to 32) this
threshold can be set quite high. The CCSM value, in this case, is dominated by
the exponential functions in the outlier detection which are depending on the
image size and, therefore, the threshold is set to

TCCSMmax = exp z, (37)

where z is also depending on the resolution of the frame (compare with Eq. 33).
If the CCSM score exceeds TCCSMmax no matching will occur and instead the
remaining components will be handled separately as discussed in the previous
two paragraphs.

5 Results

As before, the results section is subdivided into two parts. First, the change
detection results will be evaluated on a special underwater dataset and compared
against similar methods. Afterwards, the described tracking algorithm will be
performed on these results. As there is no underwater dataset with tracking data
available we had to resort to in-air datasets for a quantitative comparison with
other approaches. On the underwater dataset, only a qualitative evaluation was
possible.

5.1 Segmentation

For the evaluation of the segmentation we took the dataset and numbers pre-
sented in [23]. It is the only underwater change detection dataset so far and
includes five videos of different scenes with fishes as moving foreground objects.
For each video the first 1000 frames are used as a learning phase and are followed
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Fig. 6. In the top row are two segmentations of a fish with a low accuracy. This causes
the connected components to merge and split frequently although they all belong to the
same foreground object. In the bottom row are two fish which are accurately segmented
but their paths cross which causes the connected components to merge into one single
component. Both situations are very difficult for the tracking approach and have to be
handled with care.

by 100 frames to which hand segmented ground truth images are available for the
evaluation. The dataset features typical underwater challenges like blur, haze,
color attenuation, caustics and marine snow which all complicate the background
modeling process.

A comparison between the proposed algorithm, the original GSM and other
background subtraction algorithms is given in Table 1. It shows that the extended
GSM is a substantial improvement to the original GSM on each of the five videos
and also outperforms the other methods on the whole dataset. In Fig. 8 some
results of our algorithm are depicted.

In the Fish Swarm video we could achieve the largest improvement, mainly
because of the pre-segmentations which enabled us to build a far better back-
ground model of that scene. The main problem with this video is that there
are always fishes in the middle of the scene which are also all quite similar to
each other as well as the background. Therefore, a normal background modeling
algorithm would take the fishes as part of the background and only the exclusion
of moving objects from the updating process with the pre-segmentations could
rectify that (see Fig. 3).

Nonetheless, not all fishes in the Fish Swarm video could be detected since
some of them barely move or are almost indistinguishable from the background.
In the other four videos of the dataset the fishes can be detected very reliable
by the proposed approach and the problems there mostly consist of false detec-
tions of shadows caused by the fishes or caustics on the water surface. It is a
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complicated task to avoid these errors since the algorithm needs to be very sen-
sitive to detect fishes even when they are similar to the background which then
causes these false detections.

Table 1. The results of our and four different background subtraction methods on
the underwater change detection dataset. The first one is the original GSM algorithm,
the next two are MoG approaches and the last one is a background modeling method
based on K-nearest neighbors. Shown are the F1-Scores for the individual video and
the total dataset.

Algorithm Video

Fish swarm Marine snow Small aquacul. Caustics Two fishes Total

[1] .569 .836 .773 .549 .789 .731

[20] .303 .818 .738 .738 .793 .703

[21] .056 .648 .431 .674 .757 .451

[22] .590 .824 .882 .753 .706 .767

Proposed .845 .910 .933 .671 .824 .878

Fig. 7. Example of the S2.L1 Video of the PETS 2009 dataset. The bounding box of
the detection of the proposed algorithm is shown in purple and in blue and pink are
the provided ground truth bounding boxes. Both humans were accurately detected but
considered as one blob and therefore the detection accuracy (MOTP value) for both
human is each time below 40%. (Color figure online)

5.2 Tracking

For a meaningful assertion of the quality of different tracking algorithms a quan-
titative evaluation of the errors against ground truth data created by experts is
necessary. The scoring of the results against such ground truth data is not as
simple as for the change detection task because many different kinds of errors
are possible and have to be reflected all in the metrics. This cannot be done
by one measure alone and therefore several metrics will be used here that focus
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on different aspects. In [24] two measures especially created for the evaluation
of tracking algorithms are presented, the Multiple Object Tracking Precision
(MOTP) focuses the precision of the tracking approach and the Multiple Object
Tracking Accuracy (MOTA) on the accuracy. We will use both of them for the
evaluation to get a broader picture over the strengths and weaknesses of the
different methods.

PETS 2009 Dataset. To compare various methods based on these metrics the
video S2.L1 of the PETS 2009 Benchmark2 [25] is chosen although it features
a normal in-air scene because no ground truth data or tracking results of other
approaches are available for underwater scenarios. For this video ground truth
data is available3 and several different algorithms have already been tested on it
so that a meaningful evaluation is possible. A comparison of five different algo-
rithms with the proposed algorithm can be seen in Table 2. The metrics MOTP
and MOTA show that the proposed algorithm has a high tracking accuracy and
a below average precision. Both of these results come at least partially from
the combination of change detection with a blob tracker. The extended GSM
background subtraction delivers very accurate detection results so that hardly
any misses occur. Only when a person was mainly occluded by the sign in the
middle of the scene did the algorithm fail to detect this person occasionally
(compare Fig. 9). However, this detection accuracy comes with the price that
no single humans are detected but only moving foreground blobs which conse-
quently makes the tracking more difficult (splitting and merging of blobs) and
also reduces the accuracy of the detection since often humans that are close
together are detected and tracked together (see Fig. 7).

Table 2. Results of different tracking approaches on the S2.L1 Video of the PETS 2009
dataset. The data is taken from [26]. The results show that the proposed approach is
very good at accurately detecting and matching objects in the scene (MOTA). However,
it fails in precision (MOTP) since objects that are close together are often not separated
and treated as only one object.

Algorithm MOTP MOTA

[26] 0.788 0.608

[27] 0.563 0.797

[28] 0.538 0.759

[29] 0.600 0.660

[30] 0.761 0.814

Proposed approach 0.550 0.885

2 http://www.cvg.reading.ac.uk/PETS2009/a.html.
3 http://www.milanton.de/data.html.

http://www.cvg.reading.ac.uk/PETS2009/a.html
http://www.milanton.de/data.html
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Fig. 8. One frame of three of the five videos of the Underwater Change Detection
dataset. Shown are (top to bottom) the videos: Marine Snow, Fish Swarm and small
Aquaculture. In the middle column is the segmentation of the proposed approach and
in the right the ground truth data.

Fig. 9. Shown are results of the proposed tracking algorithm in combination with the
eGSM background subtraction on the S2.L1 Video of the PETS 2009 dataset. On
the top are the pure detection and tracking results of the proposed method and on the
bottom the results are interposed with the actual frame and the ground truth bounding
boxes which are shown in black. In the left frame it can be noticed that the person in
the middle behind the pole is not detected correctly because he is mainly occluded. In
the other images it can be seen how the persons tracked as light blue, green and yellow
are tracked correctly although the pass and occlude each other. (Color figure online)
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6 Conclusion

In this paper, a comprehensive approach for the detection and tracking of any
objects in a static scene was proposed, with a special focus on crowded under-
water videos. In the first part, the GSM background modeling was enhanced
by combining it with the Mixture of Gaussian idea and adding a foreground
model. The foreground model is especially accurate and useful in scenes with
many similar foreground objects, e.g. fish swarms. Furthermore, the updating
process was further enhanced by the usage of pre-segmentation created with the
Flux Tensor. To make the segmentations spatially coherent, which simplifies the
tracking process later enormously, the N2Cut approach was applied to adapt the
segmentation to the smoothness of natural images.

In the second part, a novel tracking approach was presented that works on
these detected foreground blobs and matches them based on a novel energy
function. A big problem is false, inaccurate or missing detections because these
errors, even if they are only present in one or two frames, lead to a false match
which is very difficult to correct later. To mitigate these problems a special
handling of merging, splitting, missing and new blobs is integrated into the
algorithm.

The segmentation approach was evaluated on a new Underwater Change
Detection dataset to test it in difficult situations and scenarios with many fore-
ground objects. Especially on the crowded scenes, the algorithm showed great
improvements compared to other methods because of the pre-segmentations but
also on the other videos a continuous improvement to the normal GSM could
be achieved. The tracking algorithm was evaluated against previous papers on
a video from the PETS 2009 dataset and could achieve a high accuracy but low
precision in comparison to the other approaches because of the unique technique
of this algorithm.
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Abstract. Speech is the most used communication method between
humans and it is considered a multisensory process. Even though there
is a popular belief that speech is something that we hear, there is over-
whelming evidence that the brain treats speech as something that we hear
and see. Much of the research has focused on Automatic Speech Recog-
nition (ASR) systems, treating speech primarily as an acoustic form of
communication. In the last years, there has been an increasing interest
in systems for Automatic Lip-Reading (ALR), although exploiting the
visual information has been proved to be challenging. One of the main
problems in ALR is how to make the system robust to the visual ambi-
guities that appear at the word level. These ambiguities make confused
and imprecise the definition of the minimum distinguishable unit of the
video domain. In contrast to the audio domain, where the phoneme is the
standard minimum auditory unit, there is no consensus on the definition
of the minimum visual unit (the viseme). In this work, we focus on the
automatic construction of a phoneme-to-viseme mapping based on visual
similarities between phonemes to maximize word recognition. We investi-
gate the usefulness of different phoneme-to-viseme mappings, obtaining
the best results for intermediate vocabulary lengths. We construct an
automatic system that uses DCT and SIFT descriptors to extract the
main characteristics of the mouth region and HMMs to model the statis-
tic relations of both viseme and phoneme sequences. We test our system
in two Spanish corpora with continuous speech (AV@CAR and VLRF)
containing 19 and 24 speakers, respectively. Our results indicate that we
are able to recognize 47% (resp. 51%) of the phonemes and 23% (resp.
21%) of the words, for AV@CAR and VLRF. We also show additional
results that support the usefulness of visemes. Experiments on a com-
parable ALR system trained exclusively using phonemes at all its stages
confirm the existence of strong visual ambiguities between groups of
phonemes. This fact and the higher word accuracy obtained when using
phoneme-to-viseme mappings, justify the usefulness of visemes instead
of the direct use of phonemes for ALR.
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1 Introduction

Speech perception is inherently a multimodal phenomenon which involves acous-
tic and visual cues. McGurk and McDonald demonstrated the influence of
vision in speech perception in [1], where it was experimentally shown that when
observers were presented with mismatched auditory and visual cues, they per-
ceived a different sound from those presented in the stimulus (e.g. audio “ba” +
visual “ga” = perceived “da”). Many authors have subsequently demonstrated
that the incorporation of visual information into speech recognition systems
improves robustness [2].

Audio signals are in general much more informative than video signals,
although it has been demonstrated that visual information (lip-reading) is used
by most people to better understand speech. Despite the common intuition that
speech is something that we hear, there is overwhelming evidence that the brain
treats speech as something that we hear, see, and even feel [3]. Visual cues
are often used unconsciously and to a different extent for different individuals,
depending on aspects such as the hearing ability [4], or the acoustic conditions,
e.g. the visual channel becomes more important in noisy environments or when
someone is speaking with a heavy foreign accent [5–8]. Furthermore, the visual
channel is the only source of information to understand the spoken language for
people with hearing disabilities [2,9,10].

In the literature, much of the research has focused on Automatic Speech
Recognition (ASR) systems, treating speech primarily as an acoustic form of
communication. Currently, ASR systems are able to recognize speech with very
high accuracy when the acoustic signal is not degraded. However, when the
acoustic signal is corrupted, the performance of ASR drops and there is the need
to rely also on the information provided by the visual channel, which relates to
the movement of the lips, teeth, tongue, and other facial features. This has led
to research in Audio-Visual Automatic Speech Recognition (AV-ASR) systems,
which try to balance the contribution of the audio and the visual information
channels to develop systems that are robust to audio artifacts and noise. AV-ASR
systems have been shown to significantly improve the recognition performance
of audio-based systems under adverse acoustic conditions [2,11].

On the other hand, in the last decades there has been an increased inter-
est in decoding speech exclusively using visual cues, leading to Automatic Lip-
Reading (ALR) systems [11–20]. Nonetheless, ALR systems are still behind in
performance compared to audio- or audio-visual systems. This can be partially
explained by the greater challenges associated to decoding speech through the
visual channel, when compared to the audio channel. Specifically, one of the key
limitations in ALR systems resides on the visual ambiguities that arise at the
word level due to homophemes, i.e. characters that are easily confused because
they produce the same or very similar lip movements.

Keeping in mind that the main objective of speech recognition systems is to
understand language, which is structured in terms of sentences, words and char-
acters, going from larger to smaller speech entities. More precisely, the standard
minimum unit in speech processing is the phoneme, defined as the minimum dis-
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tinguishable sound that is able to change the meaning of a word [21]. Similarly,
when analyzing visual information many researchers use the viseme, which is
defined as the minimum distinguishable speech unit in the video domain [22].
However, due to visual ambiguities the correspondence between both units is
no one-to-one and not all the phonemes that are heard can be distinguished
by observing the lips. There are two main types of ambiguities: (i) there are
phonemes that are easily confused because they are perceived visually similar
to others. For example, the phones /p/ and /b/ are visually indistinguishable
because voicing occurs at the glottis, which is not visible. (ii) there are phonemes
whose visual appearance can change (or even disappear) depending on the con-
text (co-articulated consonants). This is the case of the velars, consonants artic-
ulated with the back part of the tongue against the soft palate (e.g.: /k/ or /g/),
because they change their position in the palate depending on the previous or
following phoneme [23]. Thus, visemes have usually been defined as the grouping
of phonemes sharing the same visual appearance [24–26]. Nonetheless, there is no
consensus on the precise definition of the different visemes nor on their number,
or even on their usefulness [22,25–27]. There are discrepancies on whether there
is more information in the position of the lips or in their movement [24–26] and if
visemes are better defined in terms of articulatory gestures (such as lips closing
together, jaw movement, teeth exposure) which relates the use of visemes as a
form of model clustering that allows visually similar phonetic events to share a
common model [7,22,26].

Then, when designing ALR systems, one of the most important challenges
is how to make the system robust to visual ambiguities. Consequently several
different viseme vocabularies have been proposed in the literature typically with
lengths between 11 and 15 visemes [2,28–30]. For instance, [31] trained an initial
set of 56 phones and clustered them into 35 visemes using the Average Link-
age hierarchical clustering algorithm. [32] defined a phoneme-to-viseme map-
ping from 50 phonemes to 11 visemes in the English language (11 visemes plus
Silence). [30] investigated the design of context questions based on decision trees
to reveal similar linguistic context behavior between phonemes that belong to the
same viseme. For the study, based on linguistic properties, they determined seven
consonant visemes (bilabial, labiodental, dental, palato-velar, palatal, velar, and
two alveolars), four vowels, an alveolar-semivowel and one silence viseme (13
visemes in total). [33] proposed a phoneme-to-viseme mapping from 46 Ameri-
can English phones to 16 visemes to achieve natural looking lip animation. They
mapped phonetic sequences to viseme sequences before animating the lips of
3D head models. [34] presented a text-to-audiovisual speech synthesizer which
converts input text into an audiovisual speech stream. They started grouping
those phonemes which looked similar by visually comparing the viseme images.
To obtain a photo-realistic talking face they proposed a viseme vocabulary with
6 visemes that represent 24 consonant phonemes, 7 visemes that represent the
12 vowel phonemes, 2 diphthong visemes and one viseme corresponding to the
silence.
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In this work, we propose to automatically construct a phoneme-to-viseme
mapping based on visual similarities between phonemes to maximize word recog-
nition. We investigate the usefulness of different phoneme-to-viseme mappings,
obtaining the best results for intermediate vocabulary lengths. We evaluate an
ALR system based on DCT and SIFT descriptors and Hidden Markov Models
(HMMs) in two Spanish corpora with continuous speech (AV@CAR and VLRF)
containing 19 and 24 speakers, respectively. Our results indicate that we are able
to recognize 47% (resp. 51%) of the phonemes and 23% (resp. 21%) of the words,
for AV@CAR and VLRF. We also show additional results that support the use-
fulness of visemes. Firstly, we show qualitative results by comparing the average
lip-images per subject and phoneme of several subjects from both databases,
which clearly illustrate the difficulty to perceive differences between phonemes
that are known to produce visual ambiguities. Secondly, we also analyze the
results by looking at the confusion matrices obtained with our system trained
with and without using visemes as an intermediate representation. Experiments
on a comparable ALR system trained exclusively using phonemes at all its stages
confirm the existence of strong visual ambiguities between groups of phonemes.
This fact and the higher word accuracy obtained when using phoneme-to-viseme
mappings, justify the usefulness of visemes instead of the direct use of phonemes
for ALR. This paper is an extended and revised version of a preliminary confer-
ence report that was presented in [35].

2 ALR System

ALR systems typically aim at interpreting the video signal in terms of visual
units, and usually consist of 3 major steps: (1) Lips localization, (2) Extraction
of visual features, (3) Classification into sequences. In this section we start with
a brief review of the related work and then provide a detailed explanation of our
method.

2.1 Related Work

Much of the research on ALR has focused on digit recognition, isolated words
and sentences, and only more recently in continuous speech.

For Letter and Digit Recognition: [9] centred their experiments in compar-
ing different image transformations (Discrete Cosine Transform (DCT), Discrete
Wavelet Transform (DWT), Principal Component Analysis (PCA), Linear Dis-
criminant Analysis (LDA), and Fast Discrete Curvelet Transform (FDCT)) com-
bined with HMMs using the XM2VTS database [36]. Similarly, [37] presented a
system that combines DCT features and HMMs, but it was evaluated in another
database, the CUAVE database. On the other hand, both architectures pre-
sented by Papandreou et al. [38,39] were evaluated in the CUAVE database,
but used a different system based on AMM features and HMMs. In contrast,
[15] presented a feature learning method using Deep Boltzmann Machines that
recognizes simple sequences of isolated words and digit utterances and evaluated
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it in the AusTalk database [40]. Their method used both acoustic and visual
information to learn features, except for the test stage where only the visual
information was used to generate the features. On the other hand, [41] and [42]
proposed two different systems to lipread digits in another language. Specifically,
they used the CENSREC-1-AV Japanase database [43] to evaluate their systems.
[41] proposed a system that combines a general and discriminating feature (GIF)
with HMMs, in contrast to [42] who presented a system that combines Deep Bot-
tleneck Features and multi-stream HMMs. For all these methods evaluated in
different databases but tackling digit or alphabet recognition, the word accuracy
obtained was between 50% and 85%.

For Word and Phrase Recognition: [44] used a subset of 15 speakers of
the GRID corpus and centered their experiments in comparing different fea-
tures such as DCT, Sieve, PCA and AAM. They used one HMM per word for
decoding the message, 52 HMMs in total (51 words plus silence). Similarly, [45]
proposed a model composed of DCT features and one HMM per word, but using
the full set of speakers of the GRID corpus. More recently, [20] compared PCA
and HOG using SVM as classifier also in the GRID corpus. In contrast, [46]
proposed a spatiotemporal version of the LBP features and used an SVM classi-
fier to recognize isolated phrase sequences from the OuluVS database [46]. In a
different approach, [47] used a latent variable model that identifies two different
sources of variation in images, speaker appearance and pronunciation, and tried
to separate them to recognize 10 short utterances from the OuluVS database
(e.g. Excuse me, Thank you,...). Also in the OuluVS database, [48] presented
a random forest manifold alignment (RFMA) and applied it to lip-reading in
color and depth videos. More recently, [20] presented a pipeline based on Long
Short-Term Memory (LSTM) recurrent networks and compared it with two sys-
tems not using deep learning with the GRID corpus. Similarly, [49] proposed
LIPNET, an end-to-end neural network architecture that maps variable length
sequences of video to text sequences, and performs sentence-level classification
in the GRID database. All these methods addressed word or phrase recognition.
It is important to mention that, for word or phrase recognition tasks, the output
of the system is restricted to a pre-defined set of possible classes (either words
or whole phrases), which is quite different to natural speech. Systems addressing
these tasks reported word accuracy between 40% and 97%, with large variations
depending on the test database.

For Continuous Speech Recognition: [2] applied fast DCT to the mouth
region and trained an ensemble of 100 coefficients. To reduce the dimensional-
ity they used an intraframe linear discriminant analysis and maximum likeli-
hood linear transform (LDA and MLLT), resulting in a 30-dimensional feature
vector. To capture dynamic speech information, 15 consecutive feature vectors
were concatenated, followed by an interframe LDA/MLLT to obtain dynamic
visual features of length 41. They tested their system using the IBM ViaVoice
database and reported 17.49% word accuracy in continuous speech recognition.
In contrast, Thangthai et al. [50] proposed an ALR systems using AAM features
and HMM classifiers. Specifically, they trained Context-Independent HMMs
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(CI-HMM) and Context-Dependent HMMs (CD-HMM), but instead of directly
constructing word models, they defined phoneme models. They only report tests
on single-speaker experiments in the RM-3000 dataset. A different approach was
presented in [26], who used a database with short balanced utterances to define
a viseme vocabulary able to recognize continuous speech using the VIDTIMIT
database. They based their feature extraction on techniques such as PCA or
Optical flow, taking into account both the movement and appearance of the
lips. On the other hand, [51] used Convolutional Neural Networks (CNNs) to
extract high-level features and a combination of HMM to predict phonemes in
spoken Japanese. In yet another work, [52] presented a system based on a set of
viseme level HMMs. Concretely, they used Active Appearance Model parameters
transformed using LDA as visual features to train their models. They trained
14 HMMs corresponding to 13 visemes plus Silence to recover the speech. They
tested their method in their own database composed of 1000 words, obtaining
14.08% word accuracy for continuous speech recognition. More recently, [16] col-
lected a very large audio-visual speech database (+100,000 utterances), the Lip
Reading Sentences (LRS) database, and proposed a sequence-to-sequence model
based solely on CNNs and LSTM networks. They achieved the most significant
performance to date in lipreading with 49.8% word accuracy.

We can see that the recognition rates for continuous lip-reading are rather
modest in comparison to those achieved for simpler recognition tasks, which
can be explained due to the visual ambiguities that appear at the word level.
Moreover, continuous lip-reading systems must be able to decode any word of
the dictionary and process sentences that contain an arbitrary number of words
with unknown time-boundaries, not just pre-defined classes, as is the case when
addressing digit-, or word-, or sentence-recognition (at least in the cases in which
the targeted classes are a fixed set of predefined phrases).

As mentioned before we are interested in continuous speech recognition
because it is the task that is closer to actual lip-reading as done by humans.
The available databases for lip-reading in Spanish contain around 600 sentence
utterances (+1,000 different words) [53,54]. Even though results are often not
comparable because they are usually reported in different databases, with vari-
able number of speakers, vocabularies, language and so on, we can consider for
comparison to our work, those ALR systems trained with databases with similar
amount of data [2,15,20,48,50–52]. However, focusing only on those that address
continuous lip-reading (e.g. [2,52]) we find that word accuracy is typically below
the 20%, making evident the big challenges that still remain in this field.

2.2 Our System

In this section, each step of our ALR system is explained (Fig. 1). We start by
detecting the face and extracting the region of interest (ROI) that comprises the
mouth and its surrounding area. Appearance features are then extracted and
used to estimate visemes, which are finally mapped into phonemes with the help
of HMMs.
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Lips Localization. The location of the face is obtained using invariant optimal
features ASM (IOF-ASM) [55] that provides an accurate segmentation of the face
in frontal views. The face is tracked at every frame and detected landmarks are
used to fix a bounding box around the lips (ROI) (Fig. 2(a–b)). At this stage,
the ROI can have a different size in each frame. Thus, ROIs are normalized to a
fixed size of 48 × 64 pixels to achieve a uniform representation.

Fig. 1. General process of an ALR system.

Fig. 2. (a) IOF-ASM detection, the marks in yellow are used to fix the bounding
box; (b) ROI detection, each color fix a lateral of the bounding box; (c) Keypoints
distribution. (Color figure online)

Feature Extraction. After the ROI is detected a feature extraction stage
is performed. Nowadays, there is no universal feature for visual speech repre-
sentation in contrast to the Mel-Frequency Cepstral Coefficients (MFCC) for
acoustic speech. Thus, we look for an informative feature invariant to common
video issues, such as noise or illumination changes. We analyze three different
appearance-based techniques:

• SIFT : SIFT was selected as high level descriptor to extract the features in
both the spatial and temporal domains because it is highly distinctive and
invariant to image scaling and rotation, and partially invariant to illumina-
tion changes and 3D camera viewpoint [56]. In the spatial domain, the SIFT
descriptor was applied directly to the ROI, while in the temporal domain
it was applied to the centred gradient. SIFT keypoints are distributed uni-
formly around the ROI (Fig. 2(c)). The distance between keypoints was fixed
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to half of the neighbourhood covered by the descriptor to gain robustness (by
overlapping). As the dimension of the final descriptor for both spatial and
temporal domains is very high, PCA was applied to reduce the dimensional-
ity of the features. Only statistically significant components (determined by
means of Parallel Analysis [57]) were retained.

• DCT : The 2D DCT is one of the most popular techniques for feature extrac-
tion in ALR [13,44]. Its ability to compress the relevant information in a few
coefficients results in a descriptor with small dimensionality. The 2D DCT
was applied directly to the ROI. To fix the number of coefficients, the image
error between the original ROI and the reconstructed was used. Based on
preliminary experiments, we found that 121 coefficients (corresponding to 1%
reconstruction error) for both the spatial and temporal domains produced a
satisfactory performance.

• PCA: Another popular technique is PCA, also known as eigenlips [13,26,44].
PCA, similar to 2D DCT is applied directly to the ROI. To decide the optimal
number of dimensions the system was trained and tested taking different
percentages of the total variance. Lower number of components would lead
to a low quality reconstruction, but an excessive number of components will
be more affected by noise. In the end 90% of the variance was found to be a
good compromise and was used in both spatial and temporal descriptors.

The early fusion of DCT-SIFT and PCA-SIFT has been also explored to
obtain a more robust descriptor (see results in Sect. 3.3).

Feature Classification and Interpretation. The final goal of this block is
to convert the extracted features into phonemes or, if that is not possible, at
least into visemes. To this end we need: (1) classifiers that will map features to
(a first estimate of) visemes; (2) a mapping between phonemes and visemes; (3)
a model that imposes temporal coherency to the estimated sequences.

1. Classifiers: classification of visemes is a challenging task, as it has to deal
with issues such as class imbalance and label noise. Several methods have been
proposed to deal with these problems, the most common solutions being Bag-
ging and Boosting algorithms [58–61]. From these, Bagging has been reported
to perform better in the presence of training noise and thus it was selected for
our experiments. Multiple LDA was evaluated using cross validation. To add
robustness to the system, we trained classifiers to produce not just a class
label but to estimate also a class probability for each input sample.
For each bagging split, we train a multi-class LDA classifier and use the
Mahalanobis distance d to obtain a normalized projection of the data into
each class c:

dc(x) =
√

(x − x̄c)T · Σ−1
c · (x − x̄c) (1)

Then, for each class, we compute two cumulative distributions based on these
projections: one for in-class samples Φ(dc(x)−μc

σc
), x ∈ c and another one for

out-of-class samples Φ(dc(x)−μc̃

σc̃
), x ∈ c̃, which we assume Gaussian with
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means μc, μc̃ and variances σc, σc̃, respectively. An indicative example is
provided in Fig. 3. Notice that these means and variances correspond to the
projections in (1) and are different from x̄c and Σc.
We compute a class-likelihood as the ratio between the in-class and the out-of-
class distributions, as in (2) and normalize the results so that the summation
over all classes is 1, as in (3). When classifying a new sample, we use the
cumulative distributions to estimate the probability that the unknown sam-
ple belongs to each of the viseme classes (3). We assign the class with the
highest normalized likelihood Lc.

F (c | x) =
1 − Φ(dc(x)−μc

σc
)

Φ(dc(x)−μc̃

σc̃
)

(2)

Lc(x) =
F (c | x)∑C

c=1 F (c | x)
(3)

Once the classifiers are trained we could theoretically try to classify features
directly into phonemes, but as explained in Sect. 1, there are phonemes that
share the same visual appearance and are therefore unlikely to be distin-
guishable by a ALR system. Thus, such phonemes should be grouped into
the same class (visemes). In the next subsection we will present a mapping
from phonemes to visemes based on the grouping of phonemes that are visu-
ally similar.

Fig. 3. (a) Probability density functions for in-class (green) and out-of-class (red) sam-
ples; (b) Cumulative distributions corresponding to (a). Notice than for in-class samples
we use the complement of the cumulative distribution, since lower values should have
higher probabilities. Reprinted from [35]. (Color figure online)

2. Phoneme-to-viseme Mapping: to construct our phoneme to viseme map-
ping we analyze the confusion matrix resulting by comparing the ground truth
labels of the training set with the automatic classification obtained from the
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previous section. We use an iterative process, starting with the same number
of visemes as phonemes, merging at each step the visemes that show the high-
est ambiguity. The method takes into account that vowels cannot be grouped
with consonants, because it has been demonstrated that their aggregation
produces worse results [26,28].
The algorithm iterates until the desired vocabulary length is achieved. How-
ever, there is no accepted standard to fix this value beforehand. Indeed, several
different viseme vocabularies have been proposed in the literature typically
with lengths between 11 and 15 visemes. Hence, in Sect. 3.3 we will analyse
the effect of the vocabulary size on recognition accuracy. Once the vocabulary
construction is concluded, all classifiers are retrained based on the resulting
viseme classes.

3. HMM and Viterbi Algorithm: to improve the performance obtained after
feature classification, HMMs of one state per class are used to map: (1)
visemes to visemes; (2) visemes to phonemes. An HMM λ = (A,B, π) is
formed by N states and M observations. Matrix A represents the state tran-
sition probabilities, matrix B the emission probabilities, and vector π the
initial state probabilities. Given a sequence of observation O and the model
λ our aim is to find the maximum probability state path Q = q1, q2, ..., qt−1.
This can be done recursively using Viterbi algorithm [62,63]. Let δi(t) be the
probability of the most probable state path ending in state i at time t (4).
Then δj(t) can be computed recursively using (5) with initialization (6) and
termination (7).

δi(t) = max
q1,...,qt−1

P (q1...qt−1 = i, O1, ..., Ot|λ) (4)

δj(t) = max
1≤i≤N

[δi(t − 1) · ai,j ] · bj(Ot) (5)

δi(1) = πi · bi(O1), 1 ≤ i ≤ N (6)

P = max
1≤i≤N

[δi(T )] (7)

A shortage of the above is that it only considers a single observation for
each time instant t. In our case observations are the output from classifiers
and contain uncertainty. We have found that it is useful to consider multiple
possible observations for each time step. We do this by adding to the Viterbi
algorithm the likelihoods obtained by the classifiers for all classes (e.g. from
equation (3)). As a result, (5) is modified into (8), as presented in [35], where
the maximization is done across both the N states (as in (5)) and also the
M possible observations, each weighted with its likelihood estimated by the
classifiers.

δj(t) = max
1≤Ot≤M

max
1≤i≤N

[δi(t − 1) · ai,j ] · b̂j(Ot) (8)

b̂j(Ot) = bj(Ot) · L(Ot) (9)
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The short-form L(Ot) refers to the likelihood LOt
(x) as defined in (3). The

Viterbi algorithm modified as indicated in (8) is used to obtain the final
viseme sequence providing at the same time temporal consistency and toler-
ance to classification uncertainties. Once this has been achieved, visemes are
mapped into phonemes using the traditional Viterbi algorithm (5). Experi-
mental results of this improvement can be found in [35].

3 Experiments

3.1 Databases

AV@CAR Database. [53] introduced AV@CAR as a free multi-modal
database for automatic audio-visual speech recognition in Spanish, including
both studio and in-car recordings. The Audio-Visual-Lab dataset of AV@CAR
contains sequences of 20 people recorded under controlled conditions while
repeating predefined phrases or sentences. There are 197 sequences for each
person, recorded in AVI format. The video data has a spatial resolution of
768 × 576 pixels, 24-bit pixel depth, and 25 fps and is compressed at an approx-
imate rate of 50:1. The sequences are divided into 9 sessions and were captured
in a frontal view under different illumination conditions and speech tasks. Ses-
sion 2 is composed of 25 videos/user with phonetically-balanced sentences. We
have used session 2 splitting the dataset into 380 sentences (19 users × 20 sen-
tences/user) for training and 95 sentences (19 users× 5 sentences/user) to test
the system. Table 1 shows 5 samples sentences and their corresponding phonetic
transcription.

VLRF Database. [54] introduced VLRF in 2017 as a free multi-speaker
database for automatic audio-visual speech recognition in Spanish. The Audio-
Visual data contains sequences of 24 people (15 hearing; 9 hearing-impaired)
repeating up to three-time sets of 25 sentences selected from a pool of 500
phonetically-balanced sentences (10,000+ word utterances in total). The video
data has a spatial resolution of 1280 × 720 pixels and 50 fps. We have used the
first repetition of each sentence per speaker by splitting the dataset into 480 sen-
tences (24 users × 20 sentences/user) for training and 120 sentences (24 users × 5
sentences/user) to test the system. Table 1 shows 5 samples sentences and their
corresponding phonetic transcription.

3.2 Phonetic Vocabulary

SAMPA is a phonetic alphabet developed in 1989 by an international group of
phoneticians, and was applied to European languages as Dutch, English, French,
Italian, Spanish, etc. We based our phonetic vocabulary in SAMPA because it
is the most used standard in phonetic transcription [64,65]. For the Spanish
language, the vocabulary is composed by the following 29 phonemes: /p/, /b/,
/t/, /d/, /k/, /g/, /tS/, /jj/, /f/, /B/, /T/, /D/, /s/, /x/, /G/, /m/, /n/,
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/J/, /l/, /L/, /r/, /rr/, /j/, /w/, /a/, /e/, /i/, /o/, /u/. The phonemes /jj/
and /G/ were removed from our experiments because these databases did not
contain enough samples to consider them. Table 1 shows 10 samples of phonetic
transcriptions.

Table 1. Sample sentences for each database and their corresponding phonetic tran-
scription using SAMPA.

AV@CAR
Francia, Suiza y Hungrı́a ya hicieron causa común.
f4’an-Tja sw’i-Ta j uN-g4’i-a jj’a i-Tj’e-4oN k’aw-sa ko-m’un.
Después ya se hizo muy amiga nuestra.
des-pw’ez jj’a se ’i-To mw’i a-m’i-Ga nwes-t4a.
Los yernos de ismael no engordarán los pollos con hierba.
loz jj’e4-noz De iz-ma-’el n’o eN-go4-Da-4’an los p’o-Los kon jj’e4-Ba.
Me he tomado un café con leche en un bar.
me ’e to-m’a-Do ’uN ka-f’e kon l’e-tSe en ’um b’a4.
Guadalajara no está colgada de las rocas.
gwa-Da-la-x’a-4a n’o es-t’a kol-G’a-Da De laz r’o-kas.

VLRF
Una sexóloga les ayudó a salvar su relación.
’u-na sek-s’o-lo-Ga les a-jju-D’o a sal-B’a4 su re-la-Tj’on.
Es muy fácil convivir con mis compañeros de piso.
’ez mw’i f’a-Til kom-bi-B’i4 kom mis kom-pa-J’e-4oz De p’i-so.
Cuando tenia quince años fui a mi primer campamento.
kwan-do t’e-nja k’in-Te ’a-Jos fw’i a mi p4i-m’e4 kam-pa-m’en-to.
A las ocho de la mañana estaba haciendo pasteles.
a las ’o-tSo De la ma-J’a-na es-t’a-Ba a-Tj’en-do pas-t’e-les.
El amanacer es uno de los momentos más bonitos del dı́a.
el a-ma-na-T’e4 ’es ’u-no De loz mo-m’en-toz m’az Bo-n’i-toz Del d’i-a.

3.3 Results

In this section, we show the results of our experiments. In particular, we show
the comparison of the performances between the different vocabularies and the
different features.

Experimental Setup. We constructed an automatic system that uses local
appearance features based on the early fusion of DCT and SIFT descriptors (this
combination produced the best results in our tests, see below) to extract the main
characteristics of the mouth region in both spatial and temporal domains. The
classification of the extracted features into phonemes is done in two steps. Firstly,
100 LDA classifiers are trained using bagging sequences to be robust under label
noise. Then, the classifier outputs are used to compute the globally normalized
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likelihood, as the summation of the normalized likelihood computed by each clas-
sifier divided by the number of classifiers (as explained in Sect. 2). Secondly, at
the final step, one-state-per-class HMMs are used to model the dynamic relations
of the estimated visemes and produce the final phoneme sequences.

Feature Comparison. To analyze the performance of the different features,
we extracted DCT, PCA and SIFT descriptors and compared their performance
individually and combining DCT-SIFT and DCT-PCA. We used these features
as input to 100 LDA classifiers, generated by means of a bagging strategy, and
performed a 4-fold cross-validation on the training set. Figure 4 displays the
results obtained for these experiments on a vocabulary of 20 visemes, which was
the optimal length in our experiments, as shown in the next section.

Comparing the features independently, DCT and SIFT give the best per-
formances. When combined together, the fusion of both features produced an
accuracy of 0.58 for visemes, 0.47 for phonemes.

Fig. 4. Comparison of features performance. Reprinted from [35].

Comparison of Different Vocabularies. In this section, we investigate the
automatic construction of phoneme-to-viseme mappings with the goal to max-
imize word accuracy. Our system uses these mappings as an intermediate rep-
resentation which is hypothesized to facilitate the classification of the visual
information, given that viseme classes are visually less ambiguous than phoneme
classes. At the final step, our system uses HMMs to model the temporal dynam-
ics of the input stream and disambiguate viseme classes based on the sequence
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context, always producing a final output in terms of phonemes, regardless of the
length of the intermediate viseme-based representation.

To evaluate the influence of the different mappings, we analyzed the perfor-
mance of our system in the AV@CAR database in terms of viseme-, phoneme-,
and word-accuracy using viseme vocabularies of different lengths. Our first obser-
vation, from Fig. 5, is that the viseme accuracy tends to grow as we reduce the
vocabulary length. This is explained by two factors: (1) the reduction in number
of classes, which makes the classification problem a simpler one to solve; (2) the
fact that visually indistinguishable units are combined into one. The latter helps
to explain the behavior observed in terms of phoneme accuracy. As we reduce
the vocabulary length, phoneme accuracy firstly increases because we eliminate
some of the ambiguities by merging visually similar units. But if we continue to
reduce the vocabulary, too many phonemes (even unrelated) are mixed together
and their accuracy decreases because, even if these visemes are recognized better,
their mapping into phonemes is more uncertain. Thus, the optimal performance
is obtained for intermediate vocabulary lengths, because there is an optimum
compromise between the visemes and the phonemes that can be recognized.

Fig. 5. Boxplots of system performance the AV@CAR database in terms of viseme-,
phoneme- and word accuracy for different vocabularies. We analyze the one-to-one
mapping phoneme-to-viseme, and the many-to-one phoneme-to-viseme mappings with
23, 20, 16 and 14 visemes. The phoneme accuracy is always computed from the 28
phonemes.

A similar effect can be observed in the same figure in terms of words. Firstly,
we see that the one-to-one mapping between phoneme and visemes (e.g. using
the 28 phonemes classes directly, without merging them into visemes) produces
the lowest word accuracy. In contrast, intermediate vocabulary lengths show
higher word accuracy, with the maximum obtained for 20 classes, supporting
the view that the many-to-one mapping from phonemes to visemes is useful to
optimize the performance of ALR systems.

Interestingly, while our results support the advantage of combining multiple
phonemes into visemes to improve performance, the number of visemes that we
obtain are comparatively high with respect to previous efforts. In our case, the
optimal vocabulary length for Spanish reduced from 28 phonemes to 20 visemes
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(including Silence), i.e. a reduction rate of about 3 : 2. In contrast, previous
efforts reported for English started from 40 to 50 phonemes and merged them
into just 11 to 15 visemes [26], which implies reduction rates from 3 : 1 to 5 : 1.
It is not clear, however, if the higher compression of the vocabularies obeys to
a difference inherent to language or to other technical aspects, such as the ways
of defining the phoneme-to-viseme mapping.

Indeed, language differences make it difficult to make a fair comparison of
our results with respect to previous work. Firstly, it could be argued that our
viseme accuracy is comparable to values reported by [26]; however they used
at most 15 visemes while we use 20 visemes and, as shown in Fig. 5, when the
number of visemes decreases, viseme recognition accuracy increases but phoneme
accuracy might be reduced, making more difficult to recover the spoken message.
Unfortunately, [26] did not report phoneme or word accuracy.

Speaker Variability. In the literature, it has been proved that different individ-
uals vocalize in different and unique ways, which results in considerable variabil-
ity in the difficulty to lip-read across subjects. Thus, it is interesting to compare
the performance of the system using different viseme-vocabularies with respect
to the different subjects of the database. In Fig. 6 we show the performance of
the phoneme-to-viseme mappings analyzed in the previous section for each of
the speakers of the AV@CAR database. We see that, indeed, some speakers are
more difficult to lip-read than others, but the relative performance of the differ-
ent phoneme-to-viseme mappings varies only marginally. Specifically, it can be
observed that the 20-visemes vocabulary obtains the highest word accuracy for
the majority of speakers in the database.

Fig. 6. Comparison of system performance in the AV@CAR database in terms of word
accuracy for the different vocabularies and participants.

4 Discussion

Visual ambiguities have been one of the most investigated problems in ALR. In
Sect. 1, we described the minimum auditory units (phonemes) and their visual
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equivalent (visemes), as well as their many-to-one relation. Focusing on visemes,
there exist two different points of view in the literature: (i) researchers that
defend their utility and proposed several phoneme-to-viseme mappings [7,22,26,
28,35]; (ii) researchers that debate their actual usefulness and existence [16,19,
25,49].

In this work, we proposed to automatically construct a phoneme-to-viseme
mapping based on visual similarities between phonemes to maximize word accu-
racy. Thus, we investigated the usefulness of different phoneme-to-viseme map-
pings, obtaining the best results for intermediate vocabulary lengths. However,
it is also interesting to analyze additional qualitative and quantitative results,
such as lip crops and confusion matrices.

Firstly, we can find intuitive support to the existence of visemes by visually
analyzing the lips of subjects when pronouncing different phonemes. In Table 2
we show examples of the average lip-images per subject and phoneme for 5
subjects from the AV@CAR database. That is, each cell of the table contains the
average of all frames for which a given subject was uttering a certain phoneme.
Looking at the examples, we can clearly see strong visual similarities between
some of the phonemes. For example, it would be arguably difficult to distinguish
between the averages from /a/ and /e/, or between /m/, /p/ and /B/, which
correlates well with the proposed viseme mappings. On the other hand, even
when there exist visual similarities between /o/ and /u/, we can observe that
for /u/ there appears to be a smaller hole inside the lips than for /o/ in most of
the cases. The latter suggests that these two phonemes might actually be visually
separable, but in our experiments the classification results showed considerable
confusion between them (see also Fig. 7) and the best performance was obtained
with a vocabulary in which /o/ and /u/ were merged into the same viseme.

Another interesting observation from Table 2 is the variability between sub-
jects. For example, in the first two subjects in the table, the averages for the
phoneme /tS/ seem slightly different from the averages for /t/ and /s/; while the
other subjects show extremely similar averages, that are arguably indistinguish-
able. This observation is in line with the discussion from the previous section,
i.e. the fact that each person vocalizes in a unique way and there are subjects
that are easier to lip-read than others.

Thus, it is interesting to compare the preceding lip-images with those
recorded by people who consciously tries to vocalize well to be easily lip-read.
For this purpose, we decided to analyze also the lip-images from the Visual Lip
Reading Feasibility (VLRF) database [54]. Similarly to AV@CAR, the VLRF
database is an audiovisual database recorded in Spanish in which speakers were
recorded while reading a series of sentences that were provided to them. How-
ever, while in AV@CAR subjects were speaking naturally, in the VLRF database
speakers were instructed to make their best effort to be easily understood by lip-
reading. Hence, we could hypothesize that, if it were true that all phonemes are
visually distinguishable (which would imply that there is no need for visemes)
then the VLRF would be ideal corpus to visualize this.

To test the above hypothesis, we replicated our experiments in the VLRF
database to make them directly comparable to those from the AV@CAR
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Table 2. Average lip-images per user and phoneme of 5 subjects of the AV@CAR
database. Each row shows a sample subject. For each subject, every column shows the
average of all the frames in which the subject uttered a specific phoneme. The vertical
lines separate the phonemes that belong to different visemes according to our mapping.
The last row shows the average when considering all the users together.

a e m p B o u t s tS

Average across subjects

database. We start by showing the obtained results in Table 4 while Table 3
shows examples of the average lip-images per subject and phoneme for 5 sub-
jects from the VLRF database. Compared to those in Table 2, we still observe
the same visually similar units, that correlate with our mappings. However, look-
ing separately at each speaker (e.g. each row of the table), we also observe that
some of the phonemes seem now more likely to be distinguished. For example,
even though phonemes /a/ and /e/ produce very similar lip-images, in /a/ the
mouth seems more open vertically while in /e/ the mouth seems widened (more
horizontal opening). It is also possible to find differences between /t/, /s/ and
/tS/, e.g. /t/ seems to be more opened with visibility of the tongue and /tS/
seems to be pronounced joining the lips more strongly. However, this is not true
for all phonemes, e.g. the differences between /m/, /p/ and /B/ are still visu-
ally imperceptible. Moreover, the differences between phonemes from the same
speaker do not necessarily generalize across multiple speakers, as we can see
in the last row of Table 3: the lip-images averaged across multiple speakers are
again extremely similar, reflecting the visual ambiguities that justify the map-
ping of groups of phonemes into the same viseme. As a result, even in a dataset
in which subjects were trying to vocalize clearly to facilitate lip-reading, the
visual ambiguities between phonemes are still very difficult to distinguish and
additional information related to the context would be required to disambiguate
them.
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Table 3. Average lip-images per user and phoneme of 5 subjects of the VLRF database.
Each row shows a sample subject. For each subject, every column shows the average
of all the frames in which the subject uttered a specific phoneme. The vertical lines
separate the phonemes that belong to different visemes according to our mapping. The
last row shows the average when considering all the users together.

a e m p B o u t s tS

Average across subjects

Table 4. System performance in the VLRF database in terms of viseme-, phoneme-
and word accuracy for the vocabularies of 20 and 28 classes.

Vocabulary length Viseme accuracy Phoneme accuracy Word accuracy

20 56.07% 51.25% 20.76%

28 51.78% 51.78% 18.17%

A similar conclusion is achieved when we analyze the results in quantitative
terms, by looking at the confusion matrices obtained with and without using
visemes as intermediate representation. Specifically, Fig. 7 shows the confusion
matrices of our ALR system trained in two ways: firstly, using a viseme vocab-
ulary of 20 visemes (found to be optimal experimentally), and the second one
trained using a one-to-one mapping between phonemes and visemes (i.e. without
visemes). Notice, however, that in both cases we evaluate the confusion at the
final stage of the system, which always produces phoneme estimates. Thus, both
confusion matrices show the performance of the system in terms of phonemes.
A notable observation from these two matrices is that there is high confusion
between phonemes that map into the same viseme. This behaviour would be
expected in the first matrix, as it corresponds to a system trained based on such
phoneme-to-viseme mappings. However, we also see that a very similar confusion
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Fig. 7. (a) Resulting confusion matrix from a system trained in VLRF using 20 visemes
(many-to-one phoneme-to-viseme mapping). (b) Resulting confusion matrix from a
system trained in VLRF using 28 visemes (one-to-one phoneme-to-viseme mapping).
Additionally, we highlighted in yellow, the phonemes that share the same viseme in
the proposed vocabulary to a clearer comprehension.

Fig. 8. Frequency of appearance of each phoneme in the VLRF database.

appears also in the second matrix, even when the system was trained directly
on phonemes in all its stages.

Detailed analysis of Fig. 7 highlights a few other interesting points. Firstly,
in some cases the confusion between groups of phonemes are not symmetric, e.g.
although the phonemes /s/ and /t/ are visually similar, the system outputs /s/
more often than /t/, probably because the first one has a higher frequency of
appearance in the training set (see Fig. 8). Secondly, there is a huge confusion
between several consonants that are very often missclassified as vowels by the
system. This type of confusion does not seem directly related to visual similar-
ities, but to difficulties in labeling phoneme transitions and to class imbalance.
On the one hand, it is very difficult to precisely define the boundaries between
consecutive phonemes and, additionally, these can be influenced by previous and
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posterior phonemes, which leads to ambiguous labelling. The considerably higher
number of vowel samples when compared to consonants explains why the confu-
sion is not symmetric and vowels are rarely missclassified as consonants, except
for phonemes with comparably high number of samples, e.g. /s/, /m/, /n/.

5 Conclusions

We investigate the automatic construction of optimal viseme vocabularies by
iteratively combining phonemes with similar visual appearance into visemes. We
perform tests on the Spanish databases AV@CAR and VLRF using an ALR
system based on the combination of DCT and SIFT descriptors and HMMs to
model both viseme and phoneme dynamics. Using 19 and 24 different speakers,
respectively for AV@CAR and VLRF, we reach a 58% and 56% of recognition
accuracy in terms of viseme units, 47% and 51% in terms of phoneme units and
23% and 21% in terms of words units.

Our experiments support the advantage of merging groups of phonemes into
visemes. We find that this is the case of both for phonemes that are visually
indistinguishable (e.g. /b/, /m/ and /p/) as well as for those in which it is
possible to perceive subtle but insufficient differences. The latter occurs, for
example, in the case of the phonemes /s/, /t/ and /tS/, for which it is possible
to identify visual differences within the same subject but these do not seem
to reproduce consistently across multiple subjects. Moreover, experiments on
a comparable ALR system trained exclusively using phonemes at all its stages
confirmed the existence of strong visual ambiguities between groups of phonemes.
This fact and the higher word accuracy obtained when using phoneme-to-viseme
mappings, justify the usefulness of visemes instead of the direct use phonemes.

Thus, even though going through visemes may seem like a loss of information,
this is only partially true because looking at independent time instants (or small
time windows) there is no perceivable difference, in visual terms, between some
phonemes. Therefore, training a classifier to predict phonemes based on such
information seems like an ill-posed problem, since mistakes between arguably
non-separable classes (phonemes within the same viseme) contribute to the loss
function as much as those from separable ones (different visemes). Once we
estimate the viseme classes, we can disambiguate them into phonemes by means
of word or sentence context (e.g. by using HMMs or, more recently, Recurrent
Neural Networks).
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Abstract. In this work, we propose a novel context-aware framework
towards long-term person re-identification. In contrast to the classical
context-unaware architecture, in this method we exploit contextual fea-
tures that can be identified reliably and guide the re-identification pro-
cess in a much faster and accurate manner. The system is designed for
the long-term Re-ID in walking scenarios, so persons are characterized
by soft-biometric features (i.e., anthropometric and gait) acquired using
a KinectTM v.2 sensor. Context is associated to the posture of the per-
son with respect to the camera, since the quality of the data acquired
from the used sensor significantly depends on this variable. Within each
context, only the most relevant features are selected with the help of fea-
ture selection techniques, and custom individual classifiers are trained.
Afterwards, a context-aware ensemble fusion strategy which we term as
‘Context specific score-level fusion’, merges the results of individual clas-
sifiers. In typical ‘in-the-wild’ scenarios the samples of a person may not
appear in all contexts of interest. To tackle this problem we propose a
cross-context analysis where features are mapped between contexts and
allow the transfer of the identification characteristics of a person between
different contexts. We demonstrate in this work the experimental verifi-
cation of the performance of the proposed context-aware system against
the classical context-unaware system. We include in the results the anal-
ysis of switching context conditions within a video sequence through a
pilot study of circular path movement. All the analysis accentuate the
impact of contexts in simplifying the searching process by bestowing
promising results.

1 Introduction

We present a context-aware ensemble fusion framework based on soft-biometric
features, for long term person re-identification (Re-ID) in-the-wild1 surveillance
scenarios. In particular, a biometric enabled person Re-ID system, leveraging
two kinds of soft biometric features i.e., anthropometric and gait features, is
proposed. Since biometric feature extraction is strongly influenced by the view-
point, we associate context to the viewing direction, and choose the best features
1 ‘in-the-wild’ refers to the unconstrained settings.
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for each viewpoint (context). This is an extended version of the study the authors
conducted in our previous work [1]. Building upon the same, we extrapolate the
idea of ‘view-point context ’ analysis to the case where persons samples are non
uniformly distributed in the gallery set by proposing a cross-context analysis.
We also include the analysis of the challenging case of switching of contexts
when walking paths change direction with respect to the camera, a condition
not previously addressed in the literature.

In our approach, we use KinectTM sensor as the indoor Re-ID data acquisition
device. Albeit some similar Kinect based Re-ID systems have been reported in
the literature leveraging soft-biometric cues, [2–4] they are view-point dependent
i.e., data acquisition and the algorithm verification were carried out in a single
direction (view-point) with respect to the camera. Such settings do not clearly
represent general scenarios, where people walk in different directions. Hence, in
order to assess the impact of view-point on Re-ID performance, as well as to
use view-points as the contexts, we couldn’t depend upon any of such existing
datasets.

To tackle this issue, we collected a new set of data, where people were asked
to walk in various directions (left lateral, left diagonal, frontal, right diagonal
and right lateral) in front of Kinect. Along with this article, we also release
the dataset named “KS20 VisLab Multi-View Kinect skeleton dataset”, publicly
available for research purposes2. We consider that some landmarks in an indoor
space, (e.g., door entry/exit, lift location, printing and coffee machines etc.)
determine the primary walking directions rather than random walking patterns.
We term such predefined directional view-points as ‘contexts’, in this study.
We hypothesize that this knowledge of strategic directions and the assignment
of contexts are of great interest within the scope of Re-ID, since the camera
positioning and gallery preparation. Benefit a lot from them in a realistic Re-ID
surveillance scenario. In addition to that, not all the features are equally relevant
in all contexts, because the characteristics of a person that best correlate to its
identity depend strongly on the view point. For instance, a person with a short
stride gait is better perceived from a lateral view, whereas a person with a large
chest is more distinct from a frontal view. Hence, the selection of the relevant
features according to the context is also yet another interesting problem. Based
on these two hypotheses, we redefine the classical Re-ID strategy by means of
a novel ‘context-aware ensemble fusion Re-ID framework’, where we explicitly
evaluate a context-specific feature matching criteria in Re-ID, and verify its
experimental validity in a realistic scenario.

After studying the impact of context based Re-ID with baseline assumptions
(equal gallery samples in all contexts as done in [1]), we further extend this
study onto more realistic cases, where the gallery samples within the contexts
vary. Such instances of data deficiency in some view-points are frequent in ‘in-
the-Wild’ Re-ID scenarios. In many cases of practical interest, the number of
samples per person will vary in different view-points. For example in a long

2 More details on KS20 VisLab Multi-View Kinect skeleton dataset is available in the
laboratory website http://vislab.isr.ist.utl.pt/vislab multiview ks20/.

http://vislab.isr.ist.utl.pt/vislab_multiview_ks20/
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corridor, the data acquisition will capture more samples of the person, whereas
in an entry/exit point, this number may be smaller. Thus, a test sample from
corridor sequence will have a large number gallery samples to match against,
whereas for a test sample from the door sequence, the number of gallery samples
will be very few. Hence, in order to cope with this issue and to find a solution
by exploiting also the samples from other contexts, we propose a methodology
called ‘cross-context’, wherein a learned feature mapping among various contexts
can improve the results.

We include in this work the analysis of the challenging case of ‘switching
of contexts’ where the direction of person’s walk keeps varying in the video
sequence. We analyse a circular path movement as an instance of such a context-
switching scenario. Detailed analysis of all these topics will be explained in the
forthcoming sections. The major contributions of the paper are enumerated as
follows:

– Public release of a new dataset with 20 people walking in 5 different direc-
tions acquired from KinectTM v.2, suitable for long-term pose-invariant Re-
ID, named “KS20 VisLab Multi-View Kinect skeleton dataset”.

– Proposal of a ‘Context-aware ensemble fusion Re-ID framework’ where differ-
ent context specific classifiers are trained via adaptive selection of the poten-
tially relevant features in each context.

– Proposal of ‘Cross-context analysis’, in order to cope with data deficient cases
in the gallery contexts, and to improve the Re-ID performance via feature
mapping.

– A pilot study of the ‘context-switching’ test case, by experimenting people
walking along circular path (changing contexts) and conducting Re-ID trained
with KS20 dataset.

The rest of the paper is organized as follows. The related works are described
in Sect. 2. The proposed methodology is explained in Sect. 3, i.e. feature extrac-
tion method, Context-aware ensemble fusion framework and Cross-context anal-
ysis via feature mapping. In Sect. 4, our dataset and experimental results are
discussed in detail. Finally, the summary of the paper and some future plans are
enumerated in Sect. 5.

2 Related Works

Many Kinect based Re-ID works were reported in the literature in the last few
years. The major advantage of such proposals were the incorporation of soft-
biometric cues by exploiting the depth info and skeleton joints. This enabled
the Re-ID paradigm to extend towards long term scenarios, from the traditional
short-term scenarios which leverage primarily appearance cues (colour or tex-
ture).

One of the earlier works [2], proposed a specific signature to be built for
each subject from a composition of several soft biometric cues (e.g., skeleton
and surface based features) extracted from the depth data. Then, Re-ID was
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accomplished by matching these signatures against the gallery samples. Kinect
based person re-identification from soft biometric cues was also addressed in
another work by [5], leveraging skeleton descriptors (by computing several limb
lengths and ratios) and shape traits (using point cloud shape). In some other
recent works in [3] and [4], both static anthropometric features and dynamic
gait features were employed towards Re-ID tasks. Nevertheless, in all of those
methodologies, data acquisitions were conducted in a constrained manner i.e.,
in a particular view-point. In this work, we build upon the aforementioned state-
of-the-art works but in less constrained conditions by imposing an ‘in-the-wild’
indoor Re-ID scenario with various viewpoints and by exploiting relevant features
in each of those view-points (contexts).

Many definitions of context were encountered in the literature, depending on
the field of application. The dictionary definition of context is “the surroundings,
circumstances, environment, background or settings that determine, specify, or
clarify the meaning of an event or other occurrence” [6]. In our work, we deem
context as the view-point setting, under which features are computed. The con-
cept and application of context were reported in various fields, for instance, in
customer behaviour applications [7], where the context was viewed as the intent
of a purchase (e.g. context of a gift). In [8], subject re-identification has been
conducted exploiting instant messaging in a web surfing navigation. The context
used in that work was the special characteristics of chatting text (e.g. content,
syntax and structural based features). In [9] context (time of the day/location
where digital data created) was used for online customer re-identification towards
customer behaviour model analysis. The concept of context in terms of pre-
dictable and unpredictable image quality characteristics was presented in the
traffic monitoring research area in [10]. In [11], both the scene context (environ-
ment of the subject at global and local levels) and group context information
(activity interaction of subject with group members) were exploited towards
activity recognition.

In the person Re-identification paradigm, few works addressed the concept
of context. The work of [12] proposed a Re-ID paradigm which leveraged het-
erogeneous contextual information together with facial features. In particular,
they used clothing, activity, human attributes, gait and people co-occurrence as
various contexts, and then integrated all of those context features using a generic
entity resolution framework called RelDC. Some other recent Re-ID works uti-
lized context as a strategy for refining the classical Re-ID results via re-ranking
technique [13,14]. In those works, in addition to the content information of the
subjects, they also leveraged context information (k-common nearest neighbors)
to fine tune the Re-ID results. From our literature review, context is found to
be a new tool whose effectiveness in Re-ID applications is yet to be completely
explored.
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Fig. 1. Context-aware ensemble fusion system consist of a feature extraction module,
feature selection context bench, individual classifier bench, a context detector module
and a classifier fusion module. The individual classifiers for each context are trained
using individual feature subspace ensembles F∗

j , obtained for each context. When the
test data enters, context detector identifies the context and activates the corresponding
ensemble classifiers. Then, the context-aware classifier fusion strategy finally combines
the results of those ensemble classifiers to produce the global result.

3 Methodology

In this section, we explain the proposed methodology i.e., various stages of data
analysis including feature extraction, context-aware ensemble fusion framework
and cross-context mapping.

3.1 Feature Extraction

Two kinds of features were extracted: (i) Anthropometric features i.e., the static
physical features defining the body measurements and (ii) Gait features i.e.,
dynamic features defining the kinematics in walking. See Table 1 for the list of
features we used. Under the anthropometric feature set, body measurements
defining the holistic body proportions of the subject such as height, arm length,
upper torso length, lower torso length, upper to lower ratio, chest size, hip size
were collected. Similarly, under the gait features, the behavioural features deriv-
ing from the continuous monitoring of joints during the gait were collected. In
particular, mean and standard deviation of the various measurements during
a gait cycle were collected i.e., (i) the angles at various body joints; (ii) the
distance between various right-left limbs and; (iii) the relative position of body
joints.

Also three scalar features related to walking, viz., stride length, stride time
and the speed of walking, are computed within the gait features. Hence, the
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feature set contains a total of 7 anthropometric features and 67 gait features. In
Table 1, the dimension of features derived are shown within parenthesis.

Table 1. List of anthropometric and gait features used in our experiments. L&R
correspond to ‘left and right’ and x&y correspond to ‘along x and y axes’. The numbers
of features derived are shown within parenthesis.

Anthropometric features Gait features

Height-(1 ) Hip angle(L&R)-(4 ) Hip position(L&R)(x&y)-(8 )

Arm length-(1 ) Knee angle(L&R)-(4 ) Knee position(L&R)(x&y)-(8 )

Upper torso-(1 ) Foot distance-(2 ) Ankle position(L&R)(x&y)-(8 )

Lower torso-(1 ) Knee distance-(2 ) Hand position(L&R)(x&y)-(8 )

Upper-lower ratio-(1 ) Hand distance-(2 ) Shoulder position(L&R)(x&y)-(8 )

Chestsize-(1 ) Elbow distance-(2 ) Stride-(1 )

Hipsize-(1 ) Head position(x&y)-(4 ) Stride length-(1 )

Spine position(x&y)-(4 ) Speed-(1 )

3.2 Context-Aware Ensemble Fusion

One key contribution of our work is the proposal of context-aware ensemble
fusion Re-ID framework. As mentioned earlier, we experiment the impact of
the different data features along different contexts i.e., view-points, and then
employ a context-based fusion method to obtain the final Re-ID result. We refer
the work on feature subspace ensembles [15] to be a motivation to the authors to
come up with a homogeneous ensemble fusion strategy. That work presented an
approach to execute multiple parallel feature selection stages leveraging different
training conditions, so as to obtain the best features, by using majority voting
of the feature ensembles.

Our proposed framework is shown in Fig. 1. After the feature extraction is
carried out, four further modules constitute the system: (i) Feature selection
Context bench (ii) Individual classifier bench, (iii) Context detector module and
(iv) Context-aware classifier fusion module.

Feature Selection Context Bench. Refering to Fig. 1, we illustrate our
method with five context view-points as Context1 , ...,ContextN , with N = 5.
After the features are extracted from the training data within the feature extrac-
tion module, the feature descriptors are customized for individual contexts. This
usage of ‘right-data in the right context’ is one of the main advantage of our
framework in contrast to the classical approaches. This enables the data to be
split and stored in an organized manner (according to context) within the gallery.

Each context module is internally built of a feature selection bench and
an individual classifier bench. The former module analyses the feature vectors
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entered into each context, by means of a feature selection scheme and retain
only the most discriminative and relevant features. Specifically, we use the pop-
ular Sequential Forward Selection (SFS) algorithm [16] as an instance of Feature
Selection (FS). It works iteratively by adding features to an initial subset, seek-
ing to improve the Re-ID measurement. Suppose, X = {x1, · · · , xn} denotes a
set of n samples represented in a d-dimensional space, each with a d-dimensional
feature set F = (f1, · · · , fd). FS analyses this d-dimensional space in order to
identify the potentially relevant features fi ⊂ F, and discard the rest according
to some feature subspace evaluation criteria J and ultimately derive FS∗

j , which
is the set of most relevant features for context j. Thus, the outputs of the Fea-
ture selection context bench consists of an ensemble of feature subspace i.e., the
features selected for each particular context F∗ = (FS∗

1, · · · ,FS∗
5).

Specifically, the Sequential Forward Selection (SFS) algorithm works as fol-
lowing: It begins from an empty feature set FS∗

t=0. At each step, FS∗
t+1 all

possible super-spaces containing the most relevant feature subspace in the pre-
vious step, FS∗

t , and one from the remaining features fi ∈ F\FS∗
t are formed

and evaluated by J. This iterative search will proceed until a stopping criteria
is met, for which we considered the degradation of J i.e., if any super-space
formed at a given step FS∗

t+1 does not improve J, the search stops and the
subspace FS∗

t is considered as the best feature subset. At last, the outputs of
the Feature selection context bench consist of an ensemble of feature subspaces
i.e., the features selected for each particular context F∗ = (FS∗

1, · · · ,FS∗
5). For

the implementation of the algorithm, the authors used SFS package3 [17]. We
used 1NN classifier with an Euclidean neighborhood metric in the SFS scheme.

Fig. 2. Various fusion-feature selection schemes employed in this work. Top and bot-
tom rows represents feature-level and score-level fusion strategies respectively. Feature
selection (FS) is not used in case studies (a) FL/NFS and (c) SL/NFS, whereas (b)
FL/FS and (d) SL/FS shows the inclusion of FS module.

3 http://users.spa.aalto.fi/jpohjala/featureselection/.

http://users.spa.aalto.fi/jpohjala/featureselection/
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Individual Classifier Bench. After the feature selection phase, the selected
most relevant features were leveraged to train each individual classifier. These
sets of potential features consist of both anthropometric and gait features. In
order to understand how to fuse all these various features during the training of
classifiers, we use two popular traditional approaches viz., feature level fusion and
score level fusion. Also, the impact of feature selection module is verified at this
stage by enabling and disabling the FS bench. Hence, four fusion-feature selec-
tion case studies are carried out: (i) Feature-level fusion without FS (FL/NFS),
(ii) Score-level fusion without FS (SL/NFS), (iii) Feature-level fusion with FS
(FL/FS) and (iv) Score-level fusion with FS (SL/FS). The schematic represen-
tations of all these cases are depicted in Fig. 2.

In feature level fusion (see Fig. 2 top row), the biometric sets of the same
individual are concatenated after an initial normalization (Min-max) scheme.
This way, we concatenate our 7D anthropometric features and 67D gait features
in order to make a 74D feature vector. Then, the concatenated feature vector is
used in the classifier in order to represent the identity of an individual. Instead,
in score level fusion (see Fig. 2 bottom row), the fusion is carried out at the score
level. The matching scores of each biometric sets are determined independently
using two different classifiers and the matching scores at their outputs are fused
in order to provide an aggregate score result. As explained in [18], normalized
distance scores obtained at each individual classifiers can be fused using some
combination rule such as sum, product, min, max or median. In our approach,
we adopted sum rule as the classifier combination rule.

In all the case studies mentioned here, a leave one out evaluation strategy is
performed within each context, with a Nearest neighbour (NN) classifier using
euclidean distance metric. The experimental results obtained are explained in
Sect. 4.2, and the best among all those fusion-FS scheme is further used as the
de facto standard scheme in our framework. Based on this standard scheme, five
different classifiers are trained corresponding to each context, which will form
the Individual Classifier bench C = [Classifier1, · · · ,Classifier5].

Context Detector. Context detector is the module where the context (view-
point) of the test sample is estimated. This module is one of the most distinguish-
ing components of our proposed context-aware Re-ID system, in comparison to
the classical context-unaware Re-ID system. The holistic overview of both the
classical vs. proposed systems is depicted in Fig. 3. In the classical approaches,
no notion of Context is enabled, so that all the data in the gallery has to be
used in the person matching procedure. Instead, in our proposed context-aware
system, data are organised according to context. In addition to that, the Context-
detector module determines the context of the probe sample and thus redirects
the system to the corresponding gallery context in order to facilitate a faster
and more accurate person matching.
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Fig. 3. Classical (context-unaware) vs. proposed context-aware systems.

The design of the context detector module was carried out by analysing any
torso joint over a gait cycle4. Then, the direction of walking is estimated by
analysing the direction of the joint vector. Suppose hbegin and hend denote
the position of the joint in the first frame and last frame respectively. Then the
directional vector among these frames h=<hx, hy, hz> is obtained as follows:

h = hend − hbegin , (1)

The y component hy is only related to the vertical direction and hence is
ignored. Then, the angular direction θh made by h can be determined by mea-
suring the inverse tangent of hz/hx.

θh [degrees] = tan−1(hz/hx) ∗ 180/π (2)

Whenever a test data y ∈ IR1×d enters into the system, its context is esti-
mated using (1) and (2), and the corresponding ensemble classifiers are activated
in order to proceed with context-aware classifier fusion.

Context-Aware Classifier Fusion. Classifier fusion module performs a
context-specific adaptive fusion of the results obtained at the outputs of indi-
vidual classifiers C = [Classifier1, · · · ,Classifier5], based on the result from
context detector. We propose a score-level fusion based on context termed as
‘Context-specific score level fusion ’, which can be considered homologous
to the concept of user-specific score-level fusion in multibiometric systems, where
user-specific weights were assigned to indicate importance of individual biometric
matchers [18]. In a similar way, in our proposal, we endorse adaptive weights to
the scores from different classifiers according to its context, in order to increase
the influence of more reliable context. We employed linear interpolation tech-
nique as an instance of the adaptive weighting scheme.

Consider a test sample y, at an arbitrary view-point context vtest, is entering
into the system. The context is detected using the context-detector module.

4 We used ‘SpineShoulder’ i.e., the base of the neck refering to joint number
20 of KinectTM v.2 ( https://msdn.microsoft.com/en-us/library/microsoft.kinect.
jointtype.aspx) as the torso joint towards context detection, since it remains more
or less stable while walking.

https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
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Suppose the context lies in between two neighbour pre-defined context views
i.e., vi and vj. The individual classifiers for both aforementioned contexts Ci

and Cj are selected alongwith their matching scores si and sj respectively. The
context-specific score level fusion S is computed as a weighted sum of those
scores as follows:

S = η ∗ si + (1 − η) ∗ sj, (3)

where η ∈ [0, 1]. The weight η is computed via linear interpolation of the two
contexts i.e., η = |vj − vtest|/|vj − vi|. The special case where only a single
context is activated, η of the nearest context turns to be 1, and all the others
will be 0. Various case studies on this concept are analysed in detail, in the
experimental Sect. 4.3.

3.3 Cross-Context Analysis

After proposing our ‘Context-aware ensemble fusion framework’, we also propose
a special case of the scenario, where the number of subject samples varies among
different contexts. This can be considered as an extended case of the baseline
contextual analysis, where, in addition to the training of individual contexts, we
also train combination of contexts. In detail, in the baseline scenario, we assume
equal number of samples per person per view-point. This always enables the
context-aware system for a particular test sequence, to search for the match-
ing gallery sample in the very same context. However, in practical scenarios,
the gallery samples differ among various contexts. In order to overcome such
situations, we propose ‘Cross-context analysis’. Here, even if the system lacks
gallery samples of the test person in the very same context, it can search at
other contexts as well, where the number of gallery samples are higher than the
same context. This is realized via a feature mapping technique. Feature map-
ping learns the set of relevant features in a particular gallery context, given the
same/different context as the test context. Based on this idea, we analyse which
are the features of interest in Context B, given the test sample in Context A.
Feature mapping among 5 contexts results in 25 various FS sets. A pictorical
representation of the proposal is shown in Fig. 4.

In order to better understand the proposed concept, we conducted mainly
three case studies: (i) 5 cross-context case known as Full cover gallery (ii) 4
cross-context case known as Sparse cover gallery and (iii) 1 cross-context case
known as Single cover gallery.

– 5 cross-context (Full cover gallery) is the case where all contexts of all
subjects are represented in the gallery. Or in other words, we have the probe
person in all the five context galleries.

– 4 cross-context (Sparse cover gallery) is the case, where each subject
is represented in many contexts but not exactly the one of the test. In other
words, we remove the test person from the same context and thus only the
matching person data samples available in the gallery are from other 4 dif-
ferent contexts.
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Fig. 4. A schematic overview of cross-context analysis. Individual cross-context clas-
sifiers are trained based on the learned feature mapping between the probe context
i, and the gallery context of interest. Then, based on score level fusion overall Re-ID
result is given as output.

– 1 cross-context (Single cover gallery) is the case where each subject
appears in a single context in the gallery, different from the probe i.e., we
remove the test person samples from all the contexts except a random context
(other than the probe context).

4 Experiments and Results

In this section, we describe the various experiments conducted as a part of this
study, and the results and related observations are explained in detail. First of
all, we present our new dataset which we collected in connection with this study,
named ‘KS20 VisLab Multi-View Kinect skeleton dataset’5. We make it publicly
available to the community for extending this line of works. Further, we present
the performance analysis of our context-aware system and its extension towards
cross-context analysis. Four major experiments were carried out in this regard.
(A) Training of the individual context-specific classifiers, where each classifier
model is learned based on respective context; (B) Contextual analysis, where the
Re-ID system takes into account the context information of the scenario and thus
significantly reduces the search space, (C) Cross-context analysis, where the issue
of sample deficiency in the same context is tackled also by leveraging different

5 KS20 VisLab Multi-View Kinect skeleton dataset: http://vislab.isr.ist.utl.pt/
vislab multiview ks20/. Access to the Vislab Multi-view KS20 dataset is available
upon request. Contact the corresponding author if you are interested in this dataset.

http://vislab.isr.ist.utl.pt/vislab_multiview_ks20/
http://vislab.isr.ist.utl.pt/vislab_multiview_ks20/
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contexts via feature mapping technique, (D) Switching of contexts, wherein a
circular path walking test scenario is analysed to verify the Re-ID performance
of our proposed system.

4.1 Dataset

In order to employ Re-ID in a realistic ‘in-the-wild’ scenario, it is essential to
have a challenging unconstrained dataset, comprised of the sequences of people
walking in different directions. Since a KinectTM based dataset with different
viewangles was unavailable, we acquired our own dataset, in the host laboratory,
named ‘KS20 Vislab Multi-view Kinect Skeleton dataset’. It is a set of multi-view
Kinect skeleton (KS) data sequences collected from 20 walking subjects using
Kinect V.2., in the context of long-term person re-identification using biometrics.
Multiple walking sequences along five different directions i.e., Left lateral (LL at
∼0◦), Left diagonal (LD at ∼30◦), Frontal (F at ∼90◦), Right diagonal (RD at
∼130◦) and Right lateral (RL at ∼180◦) were collected. Altogether we have 300
skeleton image sequences comprising 20 subjects (3 video sequences per person
in a particular viewpoint) in the aforementioned directions.

Regarding the data acquisition, the Kinect sensor was kept at a height of an
average human (See Fig. 6(a) for the data acquisition system). This simulates
a normal video surveillance environment as well as changes in the position of
camera over time, as in a long term ‘in-the-wild’ person Re-ID scenario. The
position of camera as well as the walking directions of subjects were deliberately
altered in order to ensure a typical surveillance scenario. 20 people within the
age group 23–45, including 4 ladies and 16 men participated in the data col-
lection. The statistical details of the people i.e., age, gender, height and weight
are highlighted in the Table 2. All of them were asked to walk in their natural
gait, in front of the camera three times each along each direction. No markers
were provided to determine the path, instead only approximate direction was
instructed. The visualization of the existing five contexts in our dataset is given
in Fig. 5 by plotting how the actual view-points spread within each contexts.
Based on this study, we could observe that five contexts v1, ...,v5 are spread
around their respective cluster means μ = [1.67, 35.63, 92.83, 130.70, 180.17]�

degrees with standard deviations σ = [3.64, 4.90, 3.29, 5.34, 3.99]�degrees. Dif-
ferent walking directions and sample video frames extracted from our dataset,
are shown in Fig. 6.

Fig. 5. Distribution of the contexts in the dataset (note: directions are in degrees.).
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Table 2. Characteristics of people involved in KS20 Vislab Multiview Kinect Skeleton
dataset. This table contains the statistics of 18 people, since two people were reluctant
to provide the details.

Mean Standard deviation Minimum Maximum

Age 31.72 6.08 23 45

Height (cm) 174.78 8.17 160 185

Weight (kg) 72.11 11.60 51 95

Fig. 6. Data acquisition: (a) subject walking directions in front of the camera system
(direction angles are defined with respect to the image plane.) (b) Data acquisition
set up (c–f) sample frames from our data acquisition, in five different directions- left
lateral (∼0◦), left diagonal (∼30◦), frontal (∼90◦), right diagonal (∼130◦) and right
lateral (∼180◦) respectively.

KinectTM sensor device is composed of a set of sensors, which is accompanied
with a Software Development Kit (SDK), and can track movements from users
by using a skeleton mapping algorithm that provides the 3D information related
to the movements of body joints6. We acquired all the three available data
i.e. skeleton, colour and depth. The skeleton data contains the position and
orientation of 25 joints of the human body and was captured at the full frame
rate of the sensor @ 30 fps. Colour and depth information are employed for
appearance based features, which generally require single frame, and hence was
captured at 1 fps. However, these were not used in the current work7.

6 For body joint types and enumeration, refer to the link: https://msdn.microsoft.
com/en-us/library/microsoft.kinect.jointtype.aspx.

7 In the publicly available dataset also, only the skeleton data is provided. Neverthe-
less, color and depth information can be made available on demand.

https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
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Prior to the analysis, we had to pre-process the data to remove the noise
contents in the data. We had discussed the preprocessing and feature extraction
phases in detail in the prior work [19]. Usually, the primary effect of noise are
jerks/abnormalities in the skeleton data, during the sequences. In addition to
that, the skeleton is not detected in some frames, especially in the boundary
of the kinect range. In order to tackle such situations, we use a semi-automatic
approach to select the best frames to retain in the video sequence. By empir-
ically analysing the evolution of lower body angles over time, we cleared the
unwanted jerks in the signals. In particular, by observing the measurements
of hip angle over the sequences, we noticed that the jerks made these angles
increase abnormally, which results in drastic variations in the corresponding sig-
nals (see Fig. 7(a)). In order to clean/remove such unwanted frames, we assign
some thresholds upon the angular values, and thus only the valid data signals
are being selected (see Fig. 7(b)). Afterwards, based on those cleaned signals,
the functional units of gait viz., gait cycles, were estimated. A gait cycle is com-
prised of sequence of events/movements during locomotion from the point one
foot contacts the ground until the same foot again contacts the ground. Hence,
based on the cleaned data, the periodicity of the feet movement is estimated to
define gait cycles (see Fig. 7(c)) and various features were extracted within this
gait period.

4.2 Training of the Individual Context-Specific Classifiers

This experiment is quite analogous to the one the authors conducted in the
previous work [1], where we analysed the performance of best features among 74
features i.e., feature subset selected via feature selection. Albeit we carried out
similar analysis in the aforementioned paper, herein we have used some different
features i.e., relative joint positions instead of absolute joint positions. Based
on all these 74 features, we conduct an extensive analysis of various fusion-
Feature selection schemes, as mentioned in Sect. 3.2: (a) FL/NFS, (b) FL/FS,
(c) SL/NFS and (d) SL/FS, leveraging both feature level/score level fusion and
without/with FS. The resulting Re-ID performance as well as the corresponding
cumulative matching rank scores (showing overall CMC rank-1) are shown in
Fig. 8 and Table 3 respectively.

Results highlight that: (i) Feature selection (FS) outperforms the cases with-
out FS (NFS). (ii) Score-level fusion performs better than the feature level fusion
in Re-ID. (iii) SL/FS is found to be the best among the group and thus is con-
sidered as the ‘de-facto’ in our context-aware ensemble fusion framework, at the
individual classifier bench.

Thus, we choose SL/FS as the feature selection scheme for the remaining
of this work. This context-aware feature selection criteria resulted in the selec-
tion of best features in respective contexts as shown in Table 4. From those
customized features, we can observe that some global discriminative anthropo-
metric features such as height, arm length, chest size are highly relevant in almost
all the contexts. However, certain features clearly show its affinity towards cer-
tain contexts, for e.g., vertical movements of joints associated to gait features
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Fig. 7. (a) The abnormal transients at the ends of each sequence are due to the jerks
of skeleton occurring at its respective frames; (b) after obtaining the cleaned frames,
by filtering the abnormal frames; (c) gait cycle estimation. Three consecutive peaks
(two adjacent markers) within a sequence, represent a gait cycle.

Table 3. Chart showing the Re-ID accuracy rates for five contexts at rank-1 CMC.
The highest and second highest Re-ID rates observed are highlighted in bold and italic
letters, respectively.

Context FL/NFS FL/FS SL/NFS SL/FS

Left lateral 68.33 90.00 83.33 88.33

Left diagonal 55.00 76.67 81.67 78.33

Frontal 81.67 91.67 93.33 95.00

Right diagonal 65.00 81.67 78.33 85.00

Right lateral 68.33 86.67 86.67 88.33

Average for all contexts 67.66 85.34 84.6 86.99
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Fig. 8. The Re-ID performances of various fusion-FS schemes mentioned in Fig. 2 along
five contexts viz., left lateral (∼0◦), left diagonal (∼30◦), frontal (∼90◦), right diagonal
(∼130◦) and right lateral (∼180◦) respectively. Cumulative matching scores up to 10
subjects are shown.

(hipYµ,SD, handYµ,SD, ankleYµ,SD) are found to be selected in the lateral/
diagonal contexts, whereas the limb distances (handDistµ,SD, elbowDistµ,SD)
are found to be selected in the frontal context.

4.3 Contextual Analysis

This experimental analysis is to verify the overall performance of the proposed
context-aware system against the baseline classical context-unaware systems. In
the former i.e., Context-aware, 1-context scenario and 2-contexts scenario are
carried out. 1-context case is where the system will automatically select the
nearest gallery context and search for the best match whereas the 2-context
scenario is where the system will select the two neighbouring contexts and carry
out a linear interpolation technique (via adaptive weighted sum), in order to
re-identify the person. (see Sect. 3.2 for further details on Context-aware Re-
ID paradigm). The latter case is the baseline scenario i.e., Context-unaware,
where we disable the context detector module, and hence no notion of the probe
context is available to the system. We call this case as ‘Pure’ baseline, since no
notion of context has been considered even during the classifier training phase.
Instead, feature selection has been done globally irrespective of any context, and
the same features got selected globally thus making the FS in all the samples
context-unaware. Then, the test sample is matched against all those gallery
samples.

The results are presented in Table 5. Results clearly shows the outper-
formance of the Context-aware system against Context-unaware system. It is
notable that context-aware methods (either by using a single or two contexts)
bestow high performance level about 88%, whereas Context-unaware approaches
78%. Also, context-aware systems performed faster (6–11 s) compared to the
context-unaware system (20 s), since the notion of Context helped the reduction
of the search space and speed up the matching process. Hence, the knowledge of
context is found to be vital in augmenting the performance of a Re-ID system
in terms of both speed and accuracy.
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Table 4. Context-specific features selected via SL/FS scheme, during the training of
individual context classifiers.

Feature LL LD F RD RL

height ✓ ✓ ✓ ✓ ✓

arm ✓ ✓ ✓ ✓

upper ✓ ✓

lower ✓ ✓ ✓

ULratio ✓ ✓

chestsize ✓ ✓ ✓ ✓

hipsize ✓ ✓ ✓

kneeAngle ✓ ✓

kneeDistµ,SD ✓ ✓ ✓ ✓

elbowDistµ ✓ ✓

elbowDistSD ✓ ✓ ✓

headYµ ✓ ✓

headYSD ✓

rhipYµ,SD ✓ ✓ ✓

lhipYµ,SD ✓ ✓ ✓

lkneeYµ ✓

ankleYµ,SD ✓ ✓

lhandYµ ✓

lhandYSD ✓ ✓

rhandYµ,SD ✓

lshouldYµ ✓

handDistµ,SD ✓

lshouldYSD ✓

Table 5. Results of classifier fusion showing our proposed context-aware classifier
fusion against context-unaware baseline case studies. In context-aware cases, context
detector module is enabled, whereas in the context-unaware cases, context detector
module is disabled.

Context-unaware Context-aware

No context (pure
baseline)

1 context (binary
weights)

2 contexts
(adaptive weights)

Anthropometric 60.33% 68.67% 68.00%

Gait Re-ID 72.33% 80.67% 80.67%

Overall Re-ID 78.33% 88.00% 88.67%

Processing time 25.14 s 6.176 s 11.63 s
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4.4 Cross-Context Analysis

Refering to Sect. 3.3, we also conduct an extension of the baseline context-aware
framework, with the difference that the number of subject sample varies among
different contexts. We carried out three case studies: (i) 5 cross-context case
known as Full cover gallery, where the test sample is compared against all the
remaining 299 data samples in all the 5 contexts, (ii) 4 cross-context case known
as Sparse cover gallery, where each test will be compared against 297 data sam-
ples in the gallery, and (iii) 1 cross-context case known as Single cover gallery,
where the test sample has to be matched against 288 samples.

Now, for each of the aforementioned cases, five matching techniques are per-
formed: (a) No FS (b) Pure baseline (c) 1-nearest context (d) 2 neighboring
contexts and (e) Cross-contexts. Method ‘no FS’ doesn’t consider any Feature
selection criteria, thus the matching will be the basic feature matching of 74D
feature vectors in all the gallery contexts. The second method (Global FS) con-
ducts feature selection globally upon the whole set of data. This is the pure
baseline analysis mentioned in Table 5. Then, upon the selected feature set, it
carries out the feature matching. Since both of these cases don’t consider the
notion of context, they are categorized under Context-unaware paradigms. The
latter ones i.e. (c) 1-nearest context (d) 2 neighboring contexts and (e) Cross-
contexts, execute feature selection and context-aware Re-ID. In both (c) and (d),
baseline context-aware framework is considered whereas in (e), the cross-context
technique is exploited.

Table 6. Chart showing the Re-ID accuracy rates of cross-context analysis. Full, sparse
and single cover gallery cases with different feature selection schemes i.e., no FS, Global
FS and Customized FS are shown. The accuracy rates shown in each cell represents
Rank-1 CMC rate (in percentage).

Context-unaware Context-aware

No FS Global FS 1-context 2 contexts Cross-context

(i) Full cover (5 contexts) 74.67 78.33 88.00 88.67 82.33

(ii) Sparse cover (4 contexts) 28.00 41.67 x x 44.33

(iii) Single cover (1 context) 8.33 12.67 x x 18.33

The results for the aforementioned cases are reported in Table 6. The pri-
mary observation made out of the results is that the context-aware cases always
outperforms the context-unaware cases8. We can observe the improvement in
Re-ID performance by incorporating feature selection scheme as well as con-
text framework. It is notable that ‘Pure baseline’ (global FS) could improve the
results compared to the ‘no FS’. While exploiting contextual analysis, the best
performance is reported (they are applicable only in the full-cover scenarios).
8 1-context and 2-contexts work only for the full cover scenario, and hence other sparse

cover and single cover scenarios for the same are represented via crossmark, refering
‘Not Applicable’.
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However, Cross-context outperforms both ‘no FS’ and ‘Pure baseline’, in all the
three gallery cover scenarios. Thus, it is confirmed that when the relevant fea-
tures are selected according the context by learning the mapping of features
among various contexts, it can improve the result of Re-ID. Since deficiency of
samples in some viewpoints are a big challenge in realistic practical scenarios,
such cross-context customized FS approach is of great interest.

The best Re-ID performance among the 3 cases of gallery settings was
observed in the Full-cover gallery context i.e., 5 contexts. This may be due
to the fact that there are more and better examples to match to the test sample.
Sparse cover produces a bit worse results compared to the former since there is
no availability in the very same context, instead it searches and finds the best
matching in the four other different contexts. The worst case is where only a
single cover gallery (other than the test context) is provided, where always the
matching is poor in terms of the number of samples and quality of data, but still
outperforms the context-unaware case.

4.5 Switching of Contexts

Yet another experiment we conducted as a part of this study was that of switch-
ing of contexts. This is a scenario where the person continuously changes his
direction of walk, and hence the context (i.e., view point) also continuously
changes. We analyze this issue by considering a circular path walking. This is a
pilot study in order to understand the feasibility of applying our system towards
‘Context-switching’ scenarios. Hence, we acquired new circle path data from
two people (who belong to Vislab Multiview KS20 dataset), and try to match
them against the KS20 dataset sequences which where collected almost one year
before. Two advantages of such an acquisition were: (i) This makes a perfect
long-term Re-ID validation system since collected with a gap of long duration
and (ii) good for the analysis of varying context scenario.

In this experiment, we asked the people to walk in front of Kinect sensor in
circular paths. Either three or four complete walking sequences were recorded.
For the processing, we cleaned the data, and then segmented the data to separate
gait cycles, as described in Sect. 4.1, with the assumption that, within a gait
cycle, the person is walking in a linear path. Hence, a complete circular path
contains five or six gait cycles. Note here that, since in our training of the data
we used only the directions towards the camera, we ignore the gait cycles where
the person is walking away from the camera. Thus, out of a single circular path
walking, we extract either 2 or 3 gait cycles. Ultimately, we succeeded in making
7 gait cycles extracted out of whole sequences of walking.

We show the results of Re-ID performance of switching contexts in 2 mode
settings of the gallery samples: (i) Complete gallery and (ii) Incomplete gallery.
In the former, gallery is provided with sufficient set of samples, and thus we
analyse the Re-ID as we conducted Contextual analysis (Sect. 4.2). In the lat-
ter, we assume the practical scenario of deficiency of gallery samples, and thus
we analyse Re-ID as we conducted Cross-contextual analysis (Sect. 4.3). The
corresponding results are shown in Fig. 9. Each diagram shows the k-th rank
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Fig. 9. A case study of “switching the context”, carried out upon two persons are
depicted above. In each row, first three diagrams result from contextual analysis (com-
plete gallery samples) and the last three diagrams result from cross-contextual analysis
(incomplete gallery samples). The mean k-Rank in each case is marked via dash-dot
lines. The best results (lower mean k-Rank) were found in 2-Contexts case scenario, in
both persons.

at which the person is correctly re-identified, hence, lower the rank, better the
performance. We can observe in both cases that, the Contextual analysis outper-
forms the Cross-contextual analysis, which clearly accentuates the importance of
having good enough number of samples in the gallery set. Within the contextual
analysis, the best Re-ID performance is reported in 2-context case, exploiting
linear interpolation technique(adaptive weighted sum). Person#1 and #2 are
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respectively a woman and a man. Considering the relative population of women
and men in the dataset (16 men and 4 ladies), better Re-ID was observed for
Person#1 (lower k-th rank), implying that Re-ID of the lady candidate was
much easily done compared to the man candidate.

5 Conclusions

In this work, a context-aware person re-identification system named ‘Context-
aware ensemble fusion Re-ID framework’, and its extension towards Cross-
context analysis have been discussed. As a part of the study, we acquired a
new multi-view Kinect skeleton (KS) dataset, containing 300 data sequences
collected from 20 subjects, using KinectTM v.2. We make the dataset publicly
available to the research community as one of the contributions of this paper,
under the name ‘KS20 VisLab Multi-View Kinect skeleton dataset’.

We conducted extensive study on the impact of various anthropometric and
gait features upon person Re-ID. Since certain features have upperhand in spe-
cific view-points, we associate context to the viewing direction of walking people
in a surveillance scenario and choose the best features for each case. Such a
Context-aware proposal exploiting view-point as the contexts is one of the very
first of that kind in the Re-ID literature. Building upon our previous works in
the same area [1], we analysed various fusion schemes (Score level vs. Feature
level) and feature selection (Sequential Forward Selection), we could observe the
Score level fusion with Feature Selection schemes works the best among all of
them and is selected as the de-facto standard for our framework. Other major
contributions of the framework are context detection module and context-aware
classifier fusion technique. The experimental results of the holistic Re-ID system
performance shows that Context-aware system works faster (upto 4 times) and
accurate (up to 10% point better) compared to the context-unaware system.

Some other major extension studies were also conducted in this work. First
one was cross-context analysis, in order to overcome the practical limitation
of gallery data deficiency in the same context. The proposed cross-contextual
paradigm enables a feature mapping technique with which the best features could
be learned among different contexts, and hence the probe can search and find the
best matching even in different contexts. Results show that cross-context beats
context-unaware cases. Among the context aware methods, the cross-context is
the only applicable to cases of incomplete gallery, eventhough the 1 context and
2 context methods are the best in the full gallery cases. Another very interest-
ing experiment was the context-switching, where the person keeps on changing
the direction. In order to validate Re-ID in such scenarios, we exploited a cir-
cular path walking for 2 people as a pilot study, and tested againsted KS20
data gallery. Among various cases, 2-neighboring context (context-aware Re-ID)
method performed the best. In the future works, we envisage to incorporate mul-
tiple contextual features (i.e., view-point, distance to the camera, occurrence of
face, person co-occurrence etc.), as well as to learn contexts automatically (e.g.,
data clustering).
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Abstract. Performing accurate measurements on non-planar targets
using a robotic total station in reflectorless mode is prone to errors.
Besides requiring a fully reflected laser beam of the electronic distance
meter, a proper orientation of the pan-tilt unit is required for each indi-
vidual accurate 3D point measurement. Dominant physical 3D structures
like corners and edges often don’t fulfill these requirements and are not
directly measurable.

In this work, three algorithms and user interfaces are evaluated
through simulation and physical measurements for simple and efficient
construction-side measurement correction of systematic errors. We incor-
porate additional measurements close to the non-measurable target, and
our approach does not require any post-processing of single-point mea-
surements. Our experimental results prove that the systematic error can
be lowered by almost an order of magnitude by using support geome-
tries, i.e. incorporating a 3D point, a 3D line or a 3D plane as additional
measurements.

1 Introduction

Robotic total stations (RTS) are commonly used in surveying and building con-
struction for measuring 3D points with high precision and accuracy [1]. These
devices use an electronic distance meter (EDM) for accurate distance measure-
ments, angle sensors and actors for EDM pose definition, and RGB cameras for
tele-operation of the system. Modern devices support measuring retro-reflective
and natural targets. In the simplest case, an RTS defines a spherical coordi-
nate system with no parallax effects between the coordinate systems of sensors
and actors. An exemplary geometric model is shown in Fig. 1. In practice, more
complete geometric models are used, which allow for better calibration between
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Fig. 1. Conceptual Drawing of a simplified geometric model for a calibrated RTS with
azimuth angle θ, polar angle φ and radial distance D, as described in Klug et al. [7].
The coordinate system of the EDM is aligned with the camera coordinate system and
with the spherical coordinate frame RTS. Real-world devices require six degrees of
freedom (DOF) pose conversations between the coordinate frames as well as further
corrections.

the individual components. Details about RTS models, environmental influences
and their calibration can be found in [1–6].

Common natural targets in surveying and building construction are corners
and edges of human-made structures. These targets have a high recall value,
but are also prone to distance measurement errors. By definition, the laser of
the EDM should be fully reflected by a planar surface. However, the laser beam
divergence of the EDM renders the direct measurement of such targets criti-
cal; it increases the measurement uncertainty, and decreases the measurement
reliability. Additionally, inaccurate targeting by the user and optical limitations
further increase the measurement uncertainty. Experienced surveyors increase
the accuracy and reliability of such measurements by interpolating additional
points, measured in the local neighborhood of the target. While such correc-
tions are usually applied offline, instant estimation of the interest point (IP) can
avoid expensive repetition of measurements at a later time in case of outliers.
An extensive discussion of the problem is provided by Juretzko [8].

In this work, we analyze the benefits of online corrections of reflectorless
measuring targets with at least one quasi-planar surface visible to the RTS (see
Fig. 2). In particular, we compare three different correction methods, applied
directly in the field. To keep the measurement effort low, we do not apply
offline post-processing or high density 3D point cloud scans. As a side effect,
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the user constraints on the visual targeting precision are lowered, which allows
even non-experts to perform reliable and robust measurements. We compare the
different methods with a real-time simulation environment for RTS, and confirm
the results by physical measurements. We further introduce an RTS algorithm
design and device simulation setup, with Unity3D for real-time simulation, and
a common interface for the simulator and the real device. This allows efficient
algorithm development, the analysis of various RTS effects, and full control of
the measurement setup, which would be hard to achieve with a physical envi-
ronment.

Fig. 2. Reliable measurements require that the laser fully hits a planar surface. Non-
planar surfaces and multi-path-reflections increase the measurement uncertainties, as
described in Klug et al. [7]. (a) Natural target, where the projected laser dot is indi-
cated in green; in outdoor scenarios, the laser is barely visible. The safety distance ds

between the edges of the target and the laser hit reduces the risk of unreliable mea-
surements, but increases the measurement uncertainty; ds is mainly influenced by user
experience, camera properties (e.g. image resolution, focal length or image blur), and
by the scene setup (e.g. back light conditions, target surface properties). (b) The radius
rlb approximates the elliptical projection of the laser beam through a circle. (c) Effects
of non-planar targets on EDM measurements [8]. (Color figure online)

2 Related Work

In the following, we shortly review related work about using robotic total stations
for measuring.

Traditional surveying methods are described in Uren and Price [1], Coaker [4]
and Zeiske [9]. More recently, image-based measurement methods are embedded
in many modern total stations, including steering the RTS to selected pixels,
selecting and visualizing 3D targets in the image or visualizing metadata. As
an example, the device of Topcon [10] supports an image-based measurement
feature for not directly measurable targets like corners and edges, but without
providing any mathematical details or evaluation of the methods.
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Since image-based features have been introduced, they were studied in differ-
ent areas. Siu et al. [11] describe a close range photogrammetric solution for 3D
reconstruction and target tracking by combining several total stations and cam-
eras. Fathi et al. [12] generate 3D wire diagrams of a roof using video streams
from a calibrated stereo camera set. Their algorithm combines feature point
matching, line detection and a priori knowledge of roof structures to a structure
from motion pipeline. Even if the results of these approaches are quite impressive,
none of them can be applied for measuring corner and edge structures from a
single position. Fathi et al. further notes accuracy problems of the reconstructed
models. Ehrhart et al. [13] investigate image processing methods for deforma-
tion monitoring. In their work they detect movements of complete regions by
comparing image patches, acquired with the camera of an RTS, but without
explicitly performing any structural analysis of building corners or edges. Jadidi
et al. [14] use image based modeling to reconstruct 3D point clouds and register
as-built data to as-planned data.

Closely related to our approach is the work by Juretzko [8], who provides con-
ceptional descriptions for not directly measurable target, using intersections of
3D rays, lines and planes. However, no comparative study between the methods,
no detailed mathematical description and no suitable user interface is provided.
Furthermore, the author mentions only minimal measured point sets for each
method without any model fitting approach.

Klug et al. [7] implemented the proposed methods, but provided only a small
number of physical experiments. In this work, we extend the work of the authors
by analyzing effects of sensor and measurement uncertainties on the methods
with a novel prototyping and real-time simulation setup for RTS. In particular,
we run Monte-Carlo (MC) experiments in the RTS simulator to test different
targets with different surfaces, the influence of the EDM sensor uncertainty and
different incident angles of the EDM ray. The proposed simulation setup allows
extracting ground truth data and varying various aspects of the measurement
setup, which would be hard to achieve with physical installations. Klug et al.
use a predecessor of the framework, which features driver abstraction, but no
real-time simulation for testing various system effects. Also the authors did not
include the description of the framework. Compared to the previous work, we
provide more insights into the issues arising from sensor uncertainties and outside
of laboratory conditions in a practical working environment.

To the best of our knowledge, we are the first to analyze the discussed meth-
ods with respect to varying EDM sensor uncertainty and surface properties. We
provide a detailed mathematical formalism and a side-to-side comparison of the
user flows to simplify the required training of RTS applicants. We also provide
a comparative study of the methods, investigate the measurement concept in
detail with a real-time RTS simulator, in a laboratory setup, and in an outdoor
scenario.

In addition, we are the first to apply the novel real-time prototyping environ-
ment for RTS for interactive algorithm design and for extended MC simulations.
The concept of the proposed prototyping and simulation environment is not
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limited to the proposed setup, but can be applied to different applications with
similar requirements.

3 Concept

We compare four different measurement methods for measuring corner targets,
all executed with an RTS in reflectorless measurement mode. In particular,
we define the following methods: (a) measure a point close to the IP (nearby
method), (b) estimate the IP with a single support point method, (c) estimate
the IP with a support line method, and (d) estimate the IP with a support plane
method.

In addition, we measure the IP directly (direct method). To allow the direct
measurements of the IP, we modify the measurement target with modeling clay.
In particular, we create a temporary planar area around the IP with model-
ing clay, which is removed for all other measurement methods. This allows for
extracting reference data without a special laboratory setup. The direct method
is used as reference, the nearby method is the standard method without any cor-
rections. The support methods integrate in-the-field corrections for corner and
edge measurements.

Figure 3 shows the nearby measurement method as well as the support point,
support line and support plane method. Conceptual explanations of the methods
are provided in the following sections, while the interested reader is referred to
Klug et al. [7] for the mathematical details.

3.1 Test Hardware and Geometric Model Specification

Without loss of generality, we use the simplified geometric RTS model as shown
in Fig. 1 to explain our proposed methods. The RTS for our experiments had
been fully calibrated by the manufacturer. The driver provides access to sen-
sors and actors of the device and transforms sensor data between the different
coordinate systems; sensor data corrections are applied internally. As common
for commercially available systems, details of the internal data processing are
confidential and kept secret by manufacturers, and all drivers are closed source.
The instrument frame, shown in Fig. 1, defines a common coordinate frame for
points of a single measurement set. The registration of different measurement
sets and the measurement targets in a common coordinate system relies on the
measurement of control points. However, the point measurement methods them-
selves are the subject of the current analysis. Alternative registration methods
use a fixed installation of reflective targets. In this work, we do not register the
measured point sets in a common frame to avoid the physical installation. We
apply an indirect analysis of the measurement error, which does not require a
common coordinate frame for the measurement sets. Therefore, the results are
not influenced by the registration uncertainty of the RTS, which increases the
repeatability and reproducibility of the proposed experiments. The analysis of
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Fig. 3. Four different measurement methods of a corner with a single visible adjacent
area as proposed in [7]: (a) direct and nearby method, (b) support point method, (c)
support line method, and (d) support plane method. The view rays are enumerated
according the measurement order used for our experiments.

different registration methods is beyond the scope of this work, but can be found
in [1] (Fig. 4).

On the other hand, the simulation setup inherently provides ground truth
and a common coordinate frame for all measurements, devices and targets. This
allows for easier comparison of the different methods.

3.2 Standard Methods: Measuring the IP Directly or a Point
Nearby

In reflectorless mode, the EDM laser should fully hit the planar measurement tar-
get. Non-planar surfaces increase the measurement uncertainty, partly reflected
laser beams lower the measurement reliability. Figure 1 shows the simple geomet-
ric model for a single point measurement, Fig. 2 shows problematic measurement
targets and the systematic error introduced by the aforementioned constraint.
For an image-guided RTS, the simple work-flow for measuring an IP includes:

1. steering the laser to the IP using an interactive RTS video stream,
2. selecting the IP in the image, and
3. measuring distance and converting the sensor data to an Euclidean point.

For the direct method, the user measures the IP directly, the current angle
and distance measurements are used for conversion to a 3D point. If no planar
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Fig. 4. Measurement setup for our experiments [7]. The RTS is placed on two different
positions for testing the influence of the laser incident angle. The user controls the
RTS remotely using a vision based prototyping software on the mobile PC. The laser is
barley visible from close distance, but not from the user position or in the live camera
stream.

surface is visible at the target, the distance uncertainty increases. If a fully
reflected laser dot can not be guaranteed, the nearby method provides an intuitive
approximation. The user does not aim for the IP directly, but for a measurable
point close to it. Again, an increase of the measurement uncertainty occurs; but,
in contrast to a direct IP measurement with partly-reflected laser beam, it is user-
controlled. Repeated measurements with slowly decreasing safety gap between
the laser and the edge of the target allows an experienced user to decrease the
measurement uncertainty.

3.3 Support Point Method

To get the 3D coordinates of a building corner, the image pixel of the corner and
a support point near the corner is defined, where the distance of the support
point can be measured safely. Afterwards, the corner itself can simply be defined
in the 2D image. The 3D coordinate of the target of interest is approximated by
using the back-projected pixel of the first point and the measured distance of the
support point. The approximation error becomes reasonable small for certain
applications when following conditions hold: reasonable distance between the
measurement device and the target, a perpendicular arrangement of the view
ray and the measured surface, a small distance between the corner and the
measured 3D point.
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An offline version of this method is commonly used by surveying engineers
[4,8,15]. With the support point method, the minimal measurement count for a
3D point is Nmin = 1. Figure 3 shows the support point concept.

Measurement Flow. The simple measurement flow is defined by following steps:
1. Use the pan/tilt control interface, until the target-of-interest is visible in the

image
2. Define target-of-interest in the image
3. Define support point with a single distance measurement
4. Calculate the 3D position of the target-of-interest by using the angle of the

image point and the distance of the support point measurement.

3.4 Support Line Method

Several 3D points on the visible wall are measured by the user to estimate an
3D line which intersects the corner of interest. The corner itself can then simply
be defined in the 2D image. The related 3D target is calculated by finding the
intersection point of the back projected view ray with the previous estimated
3D doing with an least square approximation.

With support lines, the minimal measurement count for 3D points is Nmin = 2.
When using more than two points, a robust estimation like RANSAC based least
square 3D line fitting can be applied [16]. Figure 3 shows the support line concept.

Measurement Flow. The simple measurement flow is defined by following steps:
1. Use the pan/tilt control interface, until the target-of-interest is visible in the

image
2. Define target-of-interest in the image
3. Define support line with N ≥ 2 measurements
4. Calculate the 3D position of the target-of-interest by intersecting the back-

projected view ray with the support line.

3.5 Support Plane Method

To get the 3D coordinates of a building corner, the user measures several 3D
points on the visible wall to estimate an planar approximation of this wall.
The corner of interest can simply be defined in the 2D image. The related 3D
target is calculated by intersecting the back-projected view ray with the previous
estimated plane. The measurement concept is shown in Fig. 3. The target-of-
interest can be moved freely on the plane.

Measurement Flow. The simple measurement flow is defined by following steps:
1. Use the pan/tilt control interface, until the target-of-interest is visible in the

image
2. Define target-of-interest in the image
3. Define support plane with N ≥ 3 measurements
4. Calculate the 3D position of the target-of-interest by intersecting the back-

projected view ray with the support plane.
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4 Experiments

In this section, we describe the experiments undertaken. First, we shortly outline
the experimental setup. Then we describe the results of MC simulations to ana-
lyze various aspects of the proposed measurement methods, such as influences
of the target surfaces and the incident angles. Finally we experimentally evalu-
ate our methods in physical environments. Table 1 shows the test taxonomy for
both, MC simulations and physical setups. Note that a more detailed discussion
of the results is postponed to Sect. 5 to incorporate both the simulation and the
physical measurement results likewise and to draw relationships.

4.1 RTS Simulator and Interactive Testing

For proper testing the methods described above, we developed a novel RTS
prototyping environment. An abstraction layer on top of the RTS driver allows
for seamless exchange of an RTS simulator and the physical device; automati-
cally generated multi-language bindings based on the gRPC library allows for
a flexible and modular prototyping environment. Figure 5 shows the software
architecture of the RTS prototyping and simulation environment. As a major
benefit of this approach, we can treat a real physical RTS like any simulated
virtual one. Furthermore, multi-language bindings allows for transfer, control
and streaming between different heterogeneous data sources and sinks, such as,
for example a mathematical analysis engine and a game engine1.

For simulation experiments, the prototyping framework is set up to carry out
the MC simulation with a real-time RTS simulator implemented in Unity3D. The
test sets for the MC simulations are generated in MATLAB, control values and
simulation parameters are uploaded to Unity3D; the measurements are simulated
in Unity3D, results are streamed back and are evaluated in MATLAB.

For physical experiments and interactive tests, we designed a graphical user
interface which allows seamlessly interfacing the RTS simulator or the physical
RTS device. Figure 6 shows the test GUI for the different methods; The GUI
provides an intuitive work flow implementation for our experiments. This enables
even novice and non-expert users to use the proposed measuring methods within
a few minutes. For each test, the user selects a particular measurement method.
After selection of the method, the operator is automatically guided through the
process to fulfill the measuring task, with a final result given at the end.

For better repeatability, we explicitly avoid using a special laboratory for
surveying and measurement, but define a simple evaluation concept for compar-
ison of the proposed methods. The setup can be applied in indoor and outdoor
environments2.

1 Unity3D and MATLAB can be used with gRPC by compiling the abstraction layer
to shared C++ libraries.

2 The analysis does not follow the ISO 17123 standard [17], since we conduct only a
comparative studies of the proposed methods with non-direct measurable targets.
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Table 1. Test taxonomy. (x) evaluated; (x*) evaluated, where the parameter approxi-
mately fits the specification; (-) not evaluated or not applicable.

Test configurations Test environment

Property Value MC simulation Laboratory Indoor Outdoor

Surface type Planar x x* x* x*

Uneven x - - -

Fillet x - - -

Incident
angle α

0.5π x x x x

0.25π x x x x

Measurement
method

Direct x x x x

Nearby x x x x

Support point x x x x

Support line x x x x

Support plane x x x x

Noise n1 (no noise) x - - -

n2 (EDM noise) x - - -

Physical - x x x

Evaluation
method

Direct: xi,IP,ref − xi,IP,est x - - -

Indirect: xi,IP,est − xi+1,IP,est - x x x

4.2 MC Simulation

Our simulator implements the simple RTS model as shown in Fig. 1. The model is
converted to the scene graph shown on the right of Fig. 5. Additional tree nodes
are introduced for placing the RTS and the measurement target freely in the
scene. The EDM and the camera are modeled using ray casting and GPU based
rendering, both provided by Unity3D. The camera image is rendered to a texture
buffer and streamed through the simulator API for further processing. The scene
graph and ray casting results can be accessed externally via the simulator API.
The abstraction layer provides an unique API for both, the simulator and the
RTS driver. In Fig. 7, the simulator and the MC simulation workflow is depicted.

Measurement Targets Variants. The basic target is a planar triangle mesh,
placed at ten meter distance from the RTS. Different target variants are gener-
ated using following steps: 1. subdivide the surface of the basic target into small
triangles, 2. translate the mesh vertices, and 3. remove faces and vertices outside
of the region of interest (ROI) for performance reasons.

We simulate three different target variants with following surface properties:
1. planar surface, 2. uneven surface, and 3. round edges (fillet). The planar
surface variant is simply the basic target. The uneven surface variant is generated
using random translations of the mesh vertices along the vertex normals. Similar,
the fillet of the target with round edges is generated by translating the vertices
near the border as a function of the distance to the border. Figure 8 shows the
generation of the mesh variants.
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Fig. 5. RTS prototyping framework. The abstraction layer provides a common API
for the RTS driver and for the simulator, with gRPC as communication library. The
simulator implements the simplified geometric RTS model as scene graph in Unity3D,
provides the RTS API and additional access to the scene graph.

RTS Sensor Uncertainty Simulation. We follow the JCGM 100:2008 Guide to
the Expression of Uncertainty (GUM) [18] for modeling the sensor uncertainty.
In particular, GUM standardizes the analysis and report of measurement uncer-
tainties of measured physical quantities to allow repeatable experiments. The
uncertainty of RTS sensors with normal distributed random noise can be speci-
fied in following general form:

p(|y − x| ≤ kuc(y)) = CIk (1)

where x is the measured quantity, uc(y) is the combined standard uncertainty
of the measurement result y; k is the coverage factor, and CIk is the confidence
interval3. Let ua(y) be an additive and up(y) be a proportional component of
the combined sensor uncertainty, both provided by the device manufacturers.
Then, uc(y) is given by [18]

uc(y) ≈
√

ua(y) + (xup(y))2 (2)

Unity3D provides generators for uniform distributed random values. We use
the Box-Muller transform [19] to simulate normal distributed noise for sensor
readings:

3 Analogue to GUM, we use the same symbol is as the physical quantity and as the
random variable for economy of notation [18].
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Fig. 6. Test GUI used in our system [7]. The interface guides the user through the
measurement tasks. (Color figure online)

Fig. 7. MC simulation flow (left). Unity3D RTS simulator (right). (Color figure online)



364 C. Klug et al.

Fig. 8. Generation of targets for MC simulation. (Color figure online)

y = x +
√

−2ln(g) cos (2πhuc(y)) (3)

where uc(y) is the desired standard uncertainty, {g, h} are uniformly distributed
random values, and x is the simulated sensor reading without noise. The EDM
uncertainty has significant influence on the measurements and should be ana-
lyzed. The angle uncertainty of actors is negligibly small and therefore is not
considered in the calculations. Table 2 provides the sensor uncertainty settings
for the MC simulations, Fig. 9 shows the noise simulation architecture. More
general error descriptions can include signal refraction, cyclic errors, pointing
errors and camera calibration effects, but are beyond the scope of this work [1].

Table 2. MC sensor noise settings.

Description EDM sensor Angle sensor

Label Description ua(d) up(d) ua(α) up(α)

n1 Without noise 0 0 0 0

n2 With noise 0.75e−3m 10e−6m 0 0

Complex Collider Definition for Ray Casting. Unity3D allows to use triangle
meshes as colliders for physical simulations [20]. The close coupling with the
GPU limits the numeric precision of scene operations to 32 bit floating point
arithmetic4. In general, a higher precision is not required for the proposed MC
simulations. However, the non-convex measurement targets require non-convex

4 Higher precision arithmetic require explicit implementation of the scene graph and
related operations.
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Fig. 9. Uncertainty simulation for RTS sensors.

colliders, which cause ray casting problems due to numeric round-off effects.
Figure 10 shows a ray casting experiment where the ray simply passes through
a surface when targeting a mesh vertex or edge directly. This is critical for our
experiments, thus explicit colliders must be generated. We simply increase each
triangle of the target surface by 0.5e−4m. In particular, we perform the following
steps: 1. First, we remove the links between connected triangles by duplicating
shared vertices. 2. Then, we translate the vertices of a triangle along the medians,
the line between a vertex and the centroid, to enlarge the surface. While this
method decreases the simulation accuracy, it also increases the reliability of the
ray casting. The generated colliders consist of overlapping triangles, and they
counteract intersection issues caused by round-off errors.

Fig. 10. Explicit collider generation for Unity3D to avoid ray casting issues of complex
colliders.
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Additional MC Parameters. The main parameters for the MC experiments are
defined in Table 1, sensor noise parameters are given in Table 2. Additional set-
tings are required for defining the MC experiments, such as measurement count
for each method, distance between the IP point and the measured point for the
nearby method, and properties for surface variant generation. Table 3 lists the
additional MC simulation properties which we used for this work.

Table 3. Additional properties for the MC experiments used in this work.

Property Value

Bounding box for basic target 2m

ROI radius 0.5m (region for picking additional
points)

Subdivision iterations Fillet target: 50; other targets: 25

Fillet surface jitter 10e−3m

Fillet radius 30e−3m

Test count per MC experiment 100

Distance between RTS and target 10m

Inflate vertex offset for colliders 0.5e−4m

RANSAC line/plane fitting No

Minimum safety distance between ray
and target edges for non-direct methods

2.5e−3m (circular approximation of the
projected EDM ray at the intersection
point, assuming 5e−3m radius)

Results. Table 4 shows the results of the MC experiments for all 60 simulation
variants. The direct method is used to estimate reference values, the nearby
method is assumed to be the standard method when no additional corrections
are applied. Figure 11 shows the box-and-whisker plots for the simulations with-
out and with EDM sensor noise. The plots visualize following robust summary
statistics5: 1. The central mark is the median, 2. the bottom and top box bound-
aries are the 25th and 75th percentiles, respectively; 3. the + symbols show the
outliers, and 4. the whiskers show the most extreme inlier data points.

4.3 Physical Measurements

We further performed several experiments both in laboratory and outdoor envi-
ronments, measuring the distance between two corners of a flat surface, whereby
only the front face of the surface is fully visible. This is achieved by appropriately
positioning the RTS and the target as follows:

5 MATLAB standard settings for box plots, function boxplot, statistics toolbox.
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Table 4. MC simulation results. The direct method is usually not applicable for phys-
ical corner targets without target modifications.

Fig. 11. Box-and-whisker plot of the MC simulation results. (Left) without EDM noise.
(Right) with applied EDM noise.
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Fig. 12. Measurement setups for testing under laboratory conditions and for outdoor
scenarios [7]: (a) measurement of the reference distance between the two top corners
of the portable target, (b) portable target used to measure the distance between two
corners in laboratory conditions, (c) detailed view of the projected laser dot during the
reference measurement, (d) reference measurement of a window in indoor and outdoor
conditions using perpendicular viewing angle, (e) the same windows measured with a
viewing angle of 0.25π, (f) and (h) the modeling clay for reference measurements, (i),
(g) and (j) the outdoor window, the portable laboratory target and the RTS.

– Approx. same height of target center and camera center
– Approx. perpendicular laser beam direction for laboratory experiments and

outdoors for ground truth measurements
– Approx. perpendicular laser beam direction for ground truth measurements

and 0.25π direction for outdoor evaluation.

The setup is shown in Fig. 12. The distance between the measurement target
and the RTS is about 5 m in all experiments. The distance between the two top
corners of the measurement indoor target is about 0.6 m.

Measurement Strategy. For Euclidean distance evaluation, a single set measure-
ment consists of the measured 3D position of the first and the second corner of
the target6. All measurements where converted to Euclidean coordinates using
the API of the device driver. The result is given in the confidence interval of
±2σ̂d, with σ̂d as unbiased standard deviation assuming unbiased normal distri-
bution of the measurements:

6 Note that we use a half-set for our evaluations, since we do not use the second
telescope face (face right).
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The Euclidean distance of measurement i between two points pi,0 and pi,1 is
calculated by

di = ||pi,1 − pi,0|| = ||
⎡
⎣

xi,1

yi,1
zi,1

⎤
⎦ −

⎡
⎣

xi,0

yi,0
zi,0

⎤
⎦ || (4)

and the average distance d̄ and the unbiased standard deviation σ̂ is given by

d̄ =
∑N−1

i=0 di
N

σ̂ =

√∑N−1
i=0 (di − d̄)2

N − 1
(5)

For outlier removal, at least N = 3 sets must be measured. Outliers are removed
using median absolute deviation (MAD) with ±3σ̂ interval on distances [21].
The statistic evaluation is repeated on the reduced data set.

We calculate the distance error between two points d using

Δd = |d̄ref − d̄| ± 2 ·
√

ˆσref
2 + σ̂1

2 (6)

with d̄ref±2σ̂dref as reference distance and d̄±2σ̂ as measured distances between
two corners.

For measuring the ground truth, we employed two different approaches. For
the laboratory target, we aligned it with a planar surface and measured the
distance using the RTS. Note that this method is suitable for portable targets
and outer corners only. For ground truth estimation of immovable targets like
windows, we filled the corners with modeling clay to create a quasi-planar sur-
face around the corners, which could be measured by the RTS. This method is
suitable for fixed and portable targets and is well suited for inner corners7.

Laboratory Measurements. First, we conducted two experiments with the
portable target. We measured the ground truth distance between the two top
corners as shown in Fig. 12(a) and (b). Then we used the four different methods
to perform the measurement again.

In a second experiment, we measured the same distance again with the RTS
pointing at the target at an angle of approximately 0.25π.

Outdoor Measurements. We conducted four outdoor experiments, where we mea-
sured the extents of a window from a perpendicular and a 0.25π point of view.
We measured the ground truth distance shown in Fig. 12(d), (f) and (h). Then,
we applied the four measurement methods again as discussed in the previous
paragraph above.

7 Note that we performed the ground truth measurements immediately before the
experiments, to ensure that errors due to changes in environmental conditions are
negligible.
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Results. The results for the laboratory measurements are given in groups 1,2,5
and 6 of Table 5. Overall, the support line and support plane based methods
achieve considerably better results than the standard method and the support
point method, or perform at least on par. The results for an angle of approxi-
mately 0.25π indicate that the support line and support plane based methods
achieve considerably better results than the standard method and the support
point method for non-orthogonal measurement setups.

The results of the physical experiments, in which the indirect evaluation
method as discussed in Sect. 4.3 was applied, are given in groups 3 and 4 in
Table 5. The Box-and-Whisker plots for some repeated distance measurements
are presented in Fig. 13. Again, the support line and the support plane methods
are overall more suitable and give better results, or perform at least on par.

Table 5. Expanded physical distance measurement results from [7]. For the indirect
evaluation method, the error of the average distance between two measured target
points is shown.

α Record Meth. d [m] σ̂d [m] N dref [m] Δd [m]

0.5π Indoor Direct 881.992e−3 362.719e−6 10.000 881.992e−3 0

Nearby 893.240e−3 820.525e−6 8.000 881.992e−3 11.248e−3

Support point 886.912e−3 1.921e−3 10.000 881.992e−3 4.920e−3

Support line 887.088e−3 830.455e−6 10.000 881.992e−3 5.096e−3

Support plane 885.561e−3 957.555e−6 9.000 881.992e−3 3.569e−3

Lab. Direct 600.191e−3 82.942e−6 4.000 600.191e−3 0

Nearby 586.664e−3 273.151e−6 4.000 600.191e−3 13.527e−3

Support point 599.712e−3 39.655e−6 3.000 600.191e−3 478.897e−6

Support line 599.803e−3 866.189e−6 5.000 600.191e−3 387.538e−6

Support plane 604.457e−3 3.636e−3 5.000 600.191e−3 4.266e−3

Outdoor Direct 883.245e−3 25.067e−6 4.000 883.245e−3 0

Nearby 888.800e−3 14.479e−6 3.000 883.245e−3 5.555e−3

Support point 882.519e−3 807.959e−6 4.000 883.245e−3 726.362e−6

Support line 881.964e−3 813.967e−6 5.000 883.245e−3 1.282e−3

Support plane 882.181e−3 249.838e−6 4.000 883.245e−3 1.065e−3

Outdoor (long) Direct 2.192 107.789e−6 10.000 2.192 0

Nearby 2.196 1.182e−3 10.000 2.192 4.463e−3

Support point 2.193 1.248e−3 10.000 2.192 1.761e−3

Support line 2.189 819.832e−6 10.000 2.192 2.303e−3

Support plane 2.190 1.212e−3 10.000 2.192 1.587e−3

0.25π Lab. Direct 600.191e−3 82.942e−6 4.000 600.191e−3 0

Nearby 582.446e−3 1.192e−3 5.000 600.191e−3 17.745e−3

Support point 584.189e−3 240.581e−6 4.000 600.191e−3 16.002e−3

Support line 598.194e−3 229.861e−6 3.000 600.191e−3 1.997e−3

Support plane 598.545e−3 654.487e−6 5.000 600.191e−3 1.646e−3

Indoor Direct 881.702e−3 221.990e−6 5.000 881.702e−3 0

Nearby 897.636e−3 3.285e−3 5.000 881.702e−3 15.934e−3

Support point 894.017e−3 2.142e−3 5.000 881.702e−3 12.314e−3

Support line 882.071e−3 607.033e−6 5.000 881.702e−3 369.144e−6

Support plane 882.079e−3 1.165e−3 5.000 881.702e−3 377.119e−6
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Fig. 13. Accuracy results [7] for distance measurements between two window corners.
The reference distance (horizontal line) was estimated from repeated, perpendicular
measurements, using the direct method and modeling clay as temporary planar surface.

5 Discussion

In the following, we briefly discuss the results for the individual experiments in
more detail and draw relationships between the results of the simulation and the
physical measurement results with respect to different aspects.

Planar Target Surface. The MC simulation results shown in Table 4 and Fig. 11
indicate the benefits of the proposed indirect measuring methods. For the per-
pendicular setup, the accuracies of the point, line and plane support methods are
comparable with the reference result. We use the direct measurement method
with the proposed temporary target modification. For the MC simulation, the
proposed collider extension fulfills the same functionality and allows for direct
measurement of edges and corners. All support methods significantly outperform
the nearby method, for which we assumed a laser radius of 2.5e−3 m near the
target. In case of an incident angle of 0.25π, the support point method shows
a significant systematic error, the support line and plane methods do not suffer
from the same error and outperform the other methods. The results from the
physical measurements shown in Table 5 and in Fig. 13 supports our findings.

Uneven Target Surface. The limitations of the proposed methods are clearly
visible when measuring uneven and fillet targets. In this work, we use overdeter-
mined line and plane fitting, but without outlier-robust estimation. We do not
limit the support measurements to the proximity of the IP, but allow the mea-
surements within an ROI with 0.5 m radius. If we assume no EDM measurement
uncertainty, the accuracy of the support methods and the nearby method are
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in the same range. However, the support line and support plane method show
stronger dependencies of the surface properties than the other methods.

Fillet Target Surfaces. Similar to uneven target surfaces, the support line and
plane method are significantly influenced by the surface properties, while the
other methods are less affected. Special care must be taken when choosing the
best suitable method for a particular measurement. Different ROI radii would
provide further insight, but are beyond the scope of this work.

Nearby and Support Point Method. By definition, both, the nearby and the sup-
port point method use a measurement close to the IP. The support point method
is designed to reduce the systematic error by applying the angles of the IP while
assuming reasonable surface properties. The support point method outperforms
the nearby method in all experiments, as shown in Fig. 11. This method does not
increase the distance measurement count, hence has no significant influence on
the measurement duration. Given the fairly simple algorithm and user interface,
we think the integration into new and existing RTS is reasonable.

Prototyping and Simulation Environment. The proposed prototyping and simu-
lation environment lowered the implementation effort significantly. Varying phys-
ical properties of a measurement setup was easy. The laboratory measurements
and our own findings during the physical measurements support this simulation
setup for similar hardware configurations. They encourage further work on inte-
grating more realistic sensor models and additional physical properties into the
simulator.

Ray Casting in Simulation. While we used ray casting with a single ray to model
the EDM in Unity3D in this work, a more realistic simulation would integrate
multiple rays which are distributed within the laser beam. As a side effect,
ray casting problems with complex mesh colliders due to round-off errors could
be detected and corrected automatically, without the need of the workaround
proposed previously.

Targeting Uncertainty. The proposed user interfaces support optical an digital
zoom for all measurement methods. By zooming in, the targeting uncertainty
can be reduced, but it is limited by physical properties of the camera and the
measurement setup. An interesting aspect to investigate in the future is the
influence of an operators physical condition on the results, such as e.g. con-
centration, distraction, exhaustion or eye strain. In particular, these properties
can be modeled as targeting uncertainty, and can be simulated by angle sensor
uncertainty.
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6 Conclusion

In this work, we have evaluated different methods for indirect measurements
using an RTS, based on previous work from Klug et al. [7]. The initial findings
in [7] are confirmed by the simulation and extended physical experiments con-
ducted: support based methods consistently outperform the standard method,
where one reason for the huge gain in accuracy is due to the definition of the
reference method, requiring the projected laser beam to be fully on the visible
surface. This is also the main cause for the big systematic error of the reference
measurement method.

We identified three major important avenues for future investigation: (i) out-
lier detection through the use of RANSAC schemes, (ii) the use of multiple ray
casting operations in simulation, and (iii) the investigation of operator condi-
tion effects on measurement errors. The former two are targeted more towards
improvements of our methods in terms of mathematics and engineering. How-
ever, the latter clearly falls into the HCI domain and is very relevant for designing
and implementing user interfaces.
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